Software to facilitates taking movement data in xyt format and pairing it with raster covariates within a continuous time Markov chain (CTMC) framework. As described in Hanks et al. (2015) DOI:10.1214/14-AOAS803 , this allows flexible modeling of movement in response to covariates (or covariate gradients) with model fitting possible within a Poisson GLM framework.
package
Details
Typical work flow for analysis of telemetry / GPS movement data:
Fit a quasi-continuous path model to telemetry xyt data. The ctmcmove package facilitates this through the "mcmc.fmove" function.
Create or import raster layers (from package "raster") for each covariate.
Impute a quasi-continuous path (done jointly with model fitting in the "mcmc.fmove" function.
Turn the quasi-continuous path into a CTMC discrete-space path using the "path2ctmc" command.
Turn discrete-space path into Poisson GLM format using the "ctmc2glm" command.
Repeat #3 - #5 multiple times (M times). Stack together the response "z", model matrix "X", and offset "tau" elements from each imputed path.
Fit a Poisson GLM model to the stacked data with response "z", model matrix "X", offset "log(tau)", and weights for each row equal to "1/M".
7 (alternate). Alternately, multiple imputation could be used, as described in Hanks et al., (2015).
Author(s)
Ephraim M. Hanks
Maintainer: Ephraim M. Hanks
References
Hanks, E. M.; Hooten, M. B. & Alldredge, M. W. Continuous-time Discrete-space Models for Animal Movement The Annals of Applied Statistics, 2015, 9, 145-165
Hanks, E.; Hooten, M.; Johnson, D. & Sterling, J. Velocity-Based Movement Modeling for Individual and Population Level Inference PLoS ONE, Public Library of Science, 2011, 6, e22795
Hooten, M. B.; Johnson, D. S.; Hanks, E. M. & Lowry, J. H. Agent-Based Inference for Animal Movement and Selection Journal of Agricultural, Biological, and Environmental Statistics, 2010, 15, 523-538
Examples
## Not run:#### Example of using a CTMC model for movement#### Steps:## 1. Fit Quasi-Continuous Path Model to telemetry data (done using Buderman et al 2015)## 2. Create covariate raster objects (the CTMC will be on the raster## grid cells)## 3. Impute a quasi-continuous path## 4. Turn quasi-continuous path into a CTMC discrete-space path## 5. Turn discrete-space path into latent Poisson GLM format## 6. Fit a Poisson GLM model to the data##library(ctmcmove)data(seal)xyt=seal$locs[,3:1]head(xyt)plot(xyt[,1:2],type="b")xy=xyt[,-3]x=xyt[,1]y=xyt[,2]t=xyt[,3]###################################################################################################### 1. Fit functional movement model to telemetry data############################################################################library(fda)## Define the knots of the spline expansion.#### Problems with fitting the functional movement model can often be fixed by## varying the spacing of the knots.knots = seq(min(t),max(t),by=1/4)## create B-spline basis vectors used to approximate the pathb=create.bspline.basis(c(min(t),max(t)),breaks=knots,norder=3)## define the sequence of times on which to sample the imputed pathtpred=seq(min(t),max(t),by=1/24/60)## Fit latent Gaussian model using MCMCout=mcmc.fmove(xy,t,b,tpred,QQ="CAR",n.mcmc=400,a=1,r=1,num.paths.save=30)str(out)## plot 3 imputed pathsplot(xy,type="b")points(out$pathlist[[1]]$xy,col="red",type="l")points(out$pathlist[[2]]$xy,col="blue",type="l")points(out$pathlist[[3]]$xy,col="green",type="l")############################################################################## 2. Creating rasters############################################################################cov.df=seal$cov.df
str(cov.df)NN=sqrt(nrow(cov.df$X))sst=matrix(seal$cov.df$X$sst,NN,byrow=TRUE)sst=sst[NN:1,]sst=raster(sst,xmn=min(seal$cov.df$X$x),xmx=max(seal$cov.df$X$x), ymn=min(seal$cov.df$X$y),ymx=max(seal$cov.df$X$y))crs(sst)="+proj=longlat +datum=WGS84"plot(sst)chA=matrix(seal$cov.df$X$chA,NN,byrow=TRUE)chA=chA[NN:1,]chA=raster(chA,xmn=min(seal$cov.df$X$x),xmx=max(seal$cov.df$X$x), ymn=min(seal$cov.df$X$y),ymx=max(seal$cov.df$X$y))crs(chA)="+proj=longlat +datum=WGS84"pro=matrix(seal$cov.df$X$pro,NN,byrow=TRUE)pro=pro[NN:1,]npp=raster(pro,xmn=min(seal$cov.df$X$x),xmx=max(seal$cov.df$X$x), ymn=min(seal$cov.df$X$y),ymx=max(seal$cov.df$X$y))crs(npp)="+proj=longlat +datum=WGS84"int=sst
values(int)<-1d2r=int
rookery.cell=cellFromXY(int,xyt[1,1:2])values(d2r)=NAvalues(d2r)[rookery.cell]=0d2r=distance(d2r)grad.stack=stack(sst,chA,npp,d2r)names(grad.stack)<- c("sst","cha","npp","d2r")plot(sst)points(xyt[,1:2],type="b")plot(grad.stack)############################################################################## 3 Impute Quasi-Continuous Paths############################################################################P=20plot(sst,col=grey.colors(100))for(i in1:P){ points(out$pathlist[[i]]$xy,col=i,type="l",lwd=2)}points(xyt[,1:2],type="b",pch=20,cex=2,lwd=2)############################################################################## 4. Turn continuous space path into a CTMC discrete space path############################################################################path=out$pathlist[[1]]ctmc=path2ctmc(path$xy,path$t,int,method="LinearInterp")## alternate method, useful if you have impassible barriers, but slower## ctmc=path2ctmc(path$xy,path$t,int,method="ShortestPath")str(ctmc)############################################################################## 5. Turn CTMC discrete path into latent Poisson GLM data############################################################################loc.stack=stack(int,sst)names(loc.stack)<- c("Intercept","sst.loc")glm.list=list()glm.list[[1]]=ctmc2glm(ctmc,loc.stack,grad.stack)str(glm.list)for(i in2:P){ cat(i," ") path=out$pathlist[[i]] ctmc=path2ctmc(path$xy,path$t,int,method="LinearInterp") glm.list[[i]]=ctmc2glm(ctmc,loc.stack,grad.stack)}## remove transitions that are nearly instantaneous## (These are essentially outliers in the following regression analyses)for(i in1:P){ idx.0=which(glm.list[[i]]$tau<10^-5)if(length(idx.0)>0){ glm.list[[i]]=glm.list[[i]][-idx.0,]} glm.list[[i]]$t=glm.list[[i]]$t-min(glm.list[[i]]$t)}#### Stack the P imputations together##glm.data=glm.list[[1]]for(i in2:P){ glm.data=rbind(glm.data,glm.list[[i]])}str(glm.data)############################################################################## 6. Fit Poisson GLM## (here we are fitting all "M" paths simultaneously,## giving each one a weight of "1/M")############################################################################fit.SWL=glm(z~cha+npp+sst+crw+d2r+sst.loc, weights=rep(1/P,nrow(glm.data)),family="poisson",offset=log(tau),data=glm.data)summary(fit.SWL)beta.hat.SWL=coef(fit.SWL)beta.se.SWL=summary(fit.SWL)$coef[,2]############################################################################## 6. Fit Poisson GLM## (here we are fitting using Multiple Imputation############################################################################## Fit each path individuallyglm.fits=list()for(i in1:P){ glm.fits[[i]]=glm(z~cha+npp+sst+crw+d2r+sst.loc, family="poisson",offset=log(tau),data=glm.list[[i]])}## get point estimates and sd estimates using Rubin's MI combining rulesbeta.hat.mat=integer()beta.se.mat=integer()for(i in1:P){ beta.hat.mat=rbind(beta.hat.mat,coef(glm.fits[[i]])) beta.se.mat=rbind(beta.se.mat,summary(glm.fits[[i]])$coef[,2])}
beta.hat.mat
beta.se.mat
## E(beta) = E_paths(E(beta|path))beta.hat.MI=apply(beta.hat.mat,2,mean)beta.hat.MI
## Var(beta) = E_paths(Var(beta|path))+Var_paths(E(beta|path))beta.var.MI=apply(beta.se.mat^2,2,mean)+apply(beta.hat.mat,2,var)beta.se.MI=sqrt(beta.var.MI)cbind(beta.hat.MI,beta.se.MI)#### compare estimates from MI and Stacked Weighted Likelihood approach#### standardize regression coefficients by multiplying by the SE of the X matrixsds=apply(model.matrix(fit.SWL),2,sd)sds[1]=1## plot MI and SWL regression coefficientspar(mfrow=c(1,2))plot(beta.hat.MI*sds,beta.hat.SWL*sds,main="(a) Coefficient Estimates",xlab="Weighted Likelihood Coefficient",ylab="Multiple Imputation Coefficient",pch=20,cex=2)abline(0,1,col="red")plot(log(beta.se.MI),log(beta.se.SWL),main="(b) Estimated log(Standard Errors)",xlab="Weighted Likelihood log(SE)", ylab="Multiple Imputation log(SE)",pch=20,cex=2)abline(0,1,col="red")############################################################################### 6. (Alternate) We can use any software which fits Poisson glm data.## The following uses "gam" in package "mgcv" to fit a time-varying## effect of "d2r" using penalized regression splines. The result## is similar to that found in:#### Hanks, E.; Hooten, M.; Johnson, D. & Sterling, J. Velocity-Based## Movement Modeling for Individual and Population Level Inference## PLoS ONE, Public Library of Science, 2011, 6, e22795#############################################################################library(mgcv)fit=gam(z~cha+npp+crw+sst.loc+s(t,by=-d2r), weights=rep(1/P,nrow(glm.data)),family="poisson",offset=log(tau),data=glm.data)summary(fit)plot(fit)abline(h=0,col="red")################################################################ Overview Plot################################################################ pdf("sealfig.pdf",width=8.5,height=8.85)par(mfrow=c(3,3))##plot(sst,col=(terrain.colors(30)),main="(a) Sea Surface Temperature")points(xyt[1,1:2]-c(0,.05),type="p",pch=17,cex=2,col="red")points(xyt[,1:2],type="b",pch=20,cex=.75,lwd=1)##plot(d2r/1000,col=(terrain.colors(30)),main="(b) Distance to Rookery")points(xyt[1,1:2]-c(0,.05),type="p",pch=17,cex=2,col="red")points(xyt[,1:2],type="b",pch=20,cex=.75,lwd=1)##image(sst,col=rev(terrain.colors(30)),main="(c) Imputed Functional Paths",xlab="",ylab="")for(i in1:5){## points(out$pathlist[[i]]$xy,col=i+1,type="l",lwd=3) points(out$pathlist[[i]]$xy,col=i+1,type="l",lwd=2)}points(xyt[,1:2],type="p",pch=20,cex=.75,lwd=1)##ee=extent(c(188.5,190.5,58.4,59.1))sst.crop=crop(sst,ee)bg=sst.crop
values(bg)=NAfor(i in c(2)){ values(bg)[cellFromXY(bg,out$pathlist[[i]]$xy)]<-1}image(sst.crop,col=(terrain.colors(30)),xlim=c(188.85,190.2),ylim=c(58.5,59),main="(d) CTMC Path",xlab="",ylab="")image(bg,col="blue",xlim=c(188.85,190.2),ylim=c(58.5,59),add=TRUE)for(i in c(2)){ points(out$pathlist[[i]]$xy,col=i,type="l",lwd=3)}points(xyt[,1:2],type="b",pch=20,cex=2,lwd=2)##image(sst.crop,col=(terrain.colors(30)),xlim=c(189.62,189.849),ylim=c(58.785,58.895),main="(e) CTMC Model Detail",xlab="",ylab="")abline(v=189.698+res(sst)[1]*c(-1,0,1,2))abline(h=58.823+res(sst)[2]*c(-1,0,1,2))##plot(fit,main="(f) Time-Varying Response to Rookery",shade=TRUE,shade.col="orange",lwd=3,rug=F,xlab="Day of Trip",ylab="Coefficient of Distance To Rookery")abline(h=0,col="red")##################################################### Get UD (following Kenady et al 2017+)#################################################RR=get.rate.matrix(fit.SWL,loc.stack,grad.stack)UD=get.UD(RR,method="lu")ud.rast=sst
values(ud.rast)<- as.numeric(UD)plot(ud.rast)################################################### Get shortest path and current maps (following Brennan et al 2017+)#################################################library(gdistance)## create a dummy transition layer from a raster.## make sure the "directions" argument matches that used in path2ctmc## also make sure to add the "symm=FALSE" argumenttrans=transition(sst,mean,directions=4,symm=FALSE)## now replace the transition object with the "rate" matrix## so "conductance" values are "transition rates"transitionMatrix(trans)<- RR
str(trans)#### now calculate least cost paths using "shortestPath" from gdistance#### pick start and end locationsplot(sst)st=c(185,59.5)en=c(190,57.3)st.cell=cellFromXY(sst,st)en.cell=cellFromXY(sst,en)## shortest pathsp=shortestPath(trans,st,en,output="SpatialLines")plot(sst,main="Shortest Path (SST in background)")lines(sp,col="brown",lwd=7)#### Now calculate "current maps" that show space use of random walkers## moving between two given locations.#### gdistance's "passage" function allows for asymmetric transition rates##passage.gdist=passage(trans,st,en,theta=.001,totalNet="net")plot((passage.gdist))## End(Not run)