daltoolbox1.3.717 package

Leveraging Experiment Lines to Data Analytics

action.dal_transform

Action implementation for transform

action

Action

adjust_class_label

Adjust categorical mapping

adjust_data.frame

Adjust to data frame

adjust_factor

Adjust factors

adjust_matrix

Adjust to matrix

aggregation

Aggregation by groups

autoenc_base_e

Autoencoder base (encoder)

autoenc_base_ed

Autoencoder base (encoder + decoder)

categ_mapping

Categorical mapping (one‑hot encoding)

cla_bagging

Bagging (ipred)

cla_boosting

Boosting (adabag)

cla_dtree

Decision Tree for classification

cla_glm

Logistic regression (GLM)

cla_glmnet

LASSO logistic regression (glmnet)

cla_knn

K-Nearest Neighbors (KNN) Classification

cla_majority

Majority baseline classifier

cla_mlp

MLP for classification

cla_multinom

Multinomial logistic regression

cla_nb

Naive Bayes Classifier

cla_rf

Random Forest for classification

cla_rpart

CART (rpart)

cla_svm

SVM for classification

cla_tune

Classification tuning (k-fold CV)

cla_xgboost

XGBoost

classification

Classification base class

clu_tune

Clustering tuning (intrinsic metric)

cluster_cmeans

Fuzzy c-means

cluster_dbscan

DBSCAN

cluster_gmm

Gaussian mixture model clustering (GMM)

cluster_hclust

Hierarchical clustering

cluster_kmeans

k-means

cluster_louvain_graph

Louvain community detection

cluster_pam

PAM (Partitioning Around Medoids)

cluster

Cluster

clusterer

Clusterer

dal_base

Class dal_base

dal_graphics

Graphics utilities

dal_learner

DAL Learner (base class)

dal_transform

DAL Transform

dal_tune

DAL Tune (base for hyperparameter search)

data_sample

Data sampling abstractions

discover

Discover

dt_pca

PCA

evaluate

Evaluate

feature_generation

Feature generation

feature_selection_corr

Feature selection by correlation

fit_curvature_max

Maximum curvature analysis (elbow detection)

fit_curvature_min

Minimum curvature analysis (elbow detection)

fit.cla_tune

tune hyperparameters of ml model

fit.cluster_dbscan

fit dbscan model

fit

Fit

hierarchy_cut

Hierarchy mapping by cut

imputation_simple

Simple imputation

inverse_transform

Inverse Transform

k_fold

K-fold sampling

minmax

Min-max normalization

na_removal

Missing value removal

outliers_boxplot

Outlier removal by boxplot (IQR rule)

outliers_gaussian

Outlier removal by Gaussian 3-sigma rule

pat_apriori

Apriori rules

pat_cspade

cSPADE sequences

pat_eclat

ECLAT itemsets

pattern_miner

Pattern miner

plot_bar

Plot bar graph

plot_boxplot_class

Boxplot per class

plot_boxplot

Plot boxplot

plot_correlation

Plot correlation

plot_dendrogram

Plot dendrogram

plot_density_class

Plot density per class

plot_density

Plot density

plot_groupedbar

Plot grouped bar

plot_hist

Plot histogram

plot_lollipop

Plot lollipop

plot_pair_adv

Plot advanced scatter matrix

plot_pair

Plot scatter matrix

plot_parallel

Plot parallel coordinates

plot_pieplot

Plot pie

plot_pixel

Plot pixel visualization

plot_points

Plot points

plot_radar

Plot radar

plot_scatter

Scatter graph

plot_series

Plot series

plot_stackedbar

Plot stacked bar

plot_ts_pred

Plot time series with predictions

plot_ts

Plot time series chart

predictor

Predictor (base for classification/regression)

reg_dtree

Decision Tree for regression

reg_knn

K-Nearest Neighbors (KNN) Regression

reg_lm

Linear regression (lm)

reg_mlp

MLP for regression

reg_rf

Random Forest for regression

reg_svm

SVM for regression

reg_tune

Regression tuning (k-fold CV)

regression

Regression base class

sample_balance

Class balancing (up/down sampling)

sample_cluster

Cluster sampling

sample_random

Random sampling

sample_simple

Simple sampling

sample_stratified

Stratified sampling

select_hyper.cla_tune

selection of hyperparameters

select_hyper

Selection of hyperparameters

set_params.default

Default Assign parameters

set_params

Assign parameters

smoothing_cluster

Smoothing by clustering (k-means)

smoothing_freq

Smoothing by equal frequency

smoothing_inter

Smoothing by equal interval

smoothing

Smoothing (binning/quantization)

train_test_from_folds

k-fold training and test partition object

train_test

Train-Test Partition

transform

Transform

zscore

Z-score normalization

The natural increase in the complexity of current research experiments and data demands better tools to enhance productivity in Data Analytics. The package is a framework designed to address the modern challenges in data analytics workflows. The package is inspired by Experiment Line concepts. It aims to provide seamless support for users in developing their data mining workflows by offering a uniform data model and method API. It enables the integration of various data mining activities, including data preprocessing, classification, regression, clustering, and time series prediction. It also offers options for hyper-parameter tuning and supports integration with existing libraries and languages. Overall, the package provides researchers with a comprehensive set of functionalities for data science, promoting ease of use, extensibility, and integration with various tools and libraries. Information on Experiment Line is based on Ogasawara et al. (2009) <doi:10.1007/978-3-642-02279-1_20>.

  • Maintainer: Eduardo Ogasawara
  • License: MIT + file LICENSE
  • Last published: 2026-02-10 06:10:41 UTC