daltoolbox1.2.737 package

Leveraging Experiment Lines to Data Analytics

action.dal_transform

Action implementation for transform

action

Action

adjust_class_label

Adjust categorical mapping

adjust_data.frame

Adjust to data frame

adjust_factor

Adjust factors

adjust_matrix

Adjust to matrix

autoenc_base_e

Autoencoder - Encode

autoenc_base_ed

Autoencoder - Encode-decode

categ_mapping

Categorical mapping

cla_dtree

Decision Tree for classification

cla_knn

K Nearest Neighbor Classification

cla_majority

Majority Classification

cla_mlp

MLP for classification

cla_nb

Naive Bayes Classifier

cla_rf

Random Forest for classification

cla_svm

SVM for classification

cla_tune

Classification Tune

classification

classification

clu_tune

Clustering Tune

cluster_dbscan

DBSCAN

cluster_kmeans

k-means

cluster_pam

PAM

cluster

Cluster

clusterer

Clusterer

dal_base

Class dal_base

dal_learner

DAL Learner

dal_transform

DAL Transform

dal_tune

DAL Tune

data_sample

Data Sample

dt_pca

PCA

evaluate

Evaluate

fit_curvature_max

maximum curvature analysis

fit_curvature_min

minimum curvature analysis

fit.cla_tune

tune hyperparameters of ml model

fit.cluster_dbscan

fit dbscan model

fit

Fit

inverse_transform

Inverse Transform

k_fold

K-fold sampling

minmax

Min-max normalization

outliers_boxplot

outliers_boxplot

outliers_gaussian

outliers_gaussian

plot_bar

Plot bar graph

plot_boxplot_class

Boxplot per class

plot_boxplot

Plot boxplot

plot_density_class

Plot density per class

plot_density

Plot density

plot_groupedbar

Plot grouped bar

plot_hist

Plot histogram

plot_lollipop

Plot lollipop

plot_pieplot

Plot pie

plot_points

Plot points

plot_radar

Plot radar

plot_scatter

Scatter graph

plot_series

Plot series

plot_stackedbar

Plot stacked bar

plot_ts_pred

Plot a time series chart with predictions

plot_ts

Plot time series chart

predictor

DAL Predict

reg_dtree

Decision Tree for regression

reg_knn

knn regression

reg_mlp

MLP for regression

reg_rf

Random Forest for regression

reg_svm

SVM for regression

reg_tune

Regression Tune

regression

Regression

sample_random

Sample Random

sample_stratified

Stratified Random Sampling

select_hyper.cla_tune

selection of hyperparameters

select_hyper

Selection hyper parameters

set_params.default

Default Assign parameters

set_params

Assign parameters

smoothing_cluster

Smoothing by cluster

smoothing_freq

Smoothing by Freq

smoothing_inter

Smoothing by interval

smoothing

Smoothing

train_test_from_folds

k-fold training and test partition object

train_test

Train-Test Partition

transform

Transform

zscore

Z-score normalization

The natural increase in the complexity of current research experiments and data demands better tools to enhance productivity in Data Analytics. The package is a framework designed to address the modern challenges in data analytics workflows. The package is inspired by Experiment Line concepts. It aims to provide seamless support for users in developing their data mining workflows by offering a uniform data model and method API. It enables the integration of various data mining activities, including data preprocessing, classification, regression, clustering, and time series prediction. It also offers options for hyper-parameter tuning and supports integration with existing libraries and languages. Overall, the package provides researchers with a comprehensive set of functionalities for data science, promoting ease of use, extensibility, and integration with various tools and libraries. Information on Experiment Line is based on Ogasawara et al. (2009) <doi:10.1007/978-3-642-02279-1_20>.

  • Maintainer: Eduardo Ogasawara
  • License: MIT + file LICENSE
  • Last published: 2025-08-20