A Suite of Checks for Identification of Potential Errors in a Data Frame as Part of the Data Screening Process
Overview of all available checkFunctions
Vector of all variable classes in dataMaid
Overview of all available summaryFunctions
Overview of all available visualFunctions
Produce distribution plots in the base R (graphics) style using plot
...
importFrom stats na.omit
summaryFunction for central values
Perform checks of potential errors in variable/dataset
Create an object of class checkFunction
Create object of class checkResult
Extract the contents of the attribute classes
Summary function for missing values
Default checks for character variables
Default summary functions for character variables
Default checks for Date variables
Default summary functions for Date variables
Default checks for factor variables
Default summary functions for factor variables
Default checks for haven_labelled variables
Default summary functions for haven_labelled variables
Default checks for integer variables
Default summary functions for integer variables
Default checks for labelled variables
Default summary functions for labelled variables
Default checks for logical variables
Default summary functions for logical variables
Default checks for numeric variables
Default summary functions for numeric variables
Extract the contents of the attribute description
A checkFunction for identifying case issues
A checkFunction for identifying sparsely represented values (loners)
A checkFunction for identifying miscoded missing values.
A checkFunction
A checkFunction for identifying outliers
A checkFunction for identifying outliers Turkey Boxstole style
A checkFunction for identifying whitespace
Check if a variable consists of Danish CPR numbers
Check if a variable qualifies as a key
Check if a variable only contains a single value
Check if a variable has a class supported by dataMaid
Produce a data codebook
Produce a data report
Produce a message for the output of a checkFunction
summaryFunction for minimum and maximum
summaryFunction for quartiles
summaryFunction that finds reference level for factor variables
Simplified Rmarkdown rendering
Set check arguments for makeDataReport
Set summary arguments for makeDataReport
Set visual arguments for makeDataReport
Produce distribution plots using ggplot from ggplot2.
Summarize a variable/dataset
Create an object of class summaryFunction
Create object of class summaryResult
Produce tables for the makeDataReport visualizations.
summaryFunction for unique values
Summary function for original class
Create an object of class visualFunction
Produce distribution plots
Find out if the whoami package binaries is installed (git + whoami)
Data screening is an important first step of any statistical analysis. dataMaid auto generates a customizable data report with a thorough summary of the checks and the results that a human can use to identify possible errors. It provides an extendable suite of test for common potential errors in a dataset.
Useful links