des_scatterplot_matrix function

Compute Pairwise Correlations

Compute Pairwise Correlations

works on variable groups (cross-item_level), which are expected to show a Pearson correlation

des_scatterplot_matrix( label_col, study_data, item_level = "item_level", meta_data_cross_item = "cross-item_level", meta_data = item_level, meta_data_v2, cross_item_level, `cross-item_level` )

Arguments

  • label_col: variable attribute the name of the column in the metadata with labels of variables
  • study_data: data.frame the data frame that contains the measurements
  • item_level: data.frame the data frame that contains metadata attributes of study data
  • meta_data_cross_item: meta_data_cross
  • meta_data: data.frame old name for item_level
  • meta_data_v2: character path to workbook like metadata file, see prep_load_workbook_like_file for details. ALL LOADED DATAFRAMES WILL BE PURGED , using prep_purge_data_frame_cache, if you specify meta_data_v2.
  • cross_item_level: data.frame alias for meta_data_cross_item
  • cross-item_level: data.frame alias for meta_data_cross_item

Returns

a list with the slots:

  • SummaryPlotList: for each variable group a ggplot2::ggplot object with pairwise correlation plots
  • SummaryData: table with columns VARIABLE_LIST, cors, max_cor, min_cor
  • SummaryTable: like SummaryData, but machine readable and with stable column names.

Details

Descriptor # TODO: This can be an indicator

Examples

## Not run: devtools::load_all() prep_load_workbook_like_file("meta_data_v2") des_scatterplot_matrix("study_data") ## End(Not run)
  • Maintainer: Stephan Struckmann
  • License: BSD_2_clause + file LICENSE
  • Last published: 2025-03-05