datawizard1.2.0 package

Easy Data Wrangling and Statistical Transformations

adjust

Adjust data for the effect of other variable(s)

assign_labels

Assign variable and value labels

categorize

Recode (or "cut" / "bin") data into groups of values.

center

Centering (Grand-Mean Centering)

coef_var

Compute the coefficient of variation

coerce_to_numeric

Convert to Numeric (if possible)

colnames

Tools for working with column names

contr.deviation

Deviation Contrast Matrix

convert_na_to

Replace missing values in a variable or a data frame.

convert_to_na

Convert non-missing values in a variable into missing values.

data_arrange

Arrange rows by column values

data_codebook

Generate a codebook of a data frame.

data_duplicated

Extract all duplicates

data_extract

Extract one or more columns or elements from an object

data_group

Create a grouped data frame

data_match

Return filtered or sliced data frame, or row indices

data_merge

Merge (join) two data frames, or a list of data frames

data_modify

Create new variables in a data frame

data_partition

Partition data

data_peek

Peek at values and type of variables in a data frame

data_prefix_suffix

Add a prefix or suffix to column names

data_read

Read (import) data files from various sources

data_relocate

Relocate (reorder) columns of a data frame

data_rename

Rename columns and variable names

data_replicate

Expand (i.e. replicate rows) a data frame

data_restoretype

Restore the type of columns according to a reference data frame

data_rotate

Rotate a data frame

data_seek

Find variables by their names, variable or value labels

data_separate

Separate single variable into multiple variables

data_summary

Summarize data

data_tabulate

Create frequency and crosstables of variables

data_to_long

Reshape (pivot) data from wide to long

data_to_wide

Reshape (pivot) data from long to wide

data_unique

Keep only one row from all with duplicated IDs

data_unite

Unite ("merge") multiple variables

datawizard-package

datawizard: Easy Data Wrangling and Statistical Transformations

demean

Compute group-meaned and de-meaned variables

describe_distribution

Describe a distribution

distribution_mode

Compute mode for a statistical distribution

dot-is_deprecated

Print a message saying that an argument is deprecated and that the use...

extract_column_names

Find or get columns in a data frame based on search patterns

labels_to_levels

Convert value labels into factor levels

makepredictcall.dw_transformer

Utility Function for Safe Prediction with datawizard transformers

mean_sd

Summary Helpers

means_by_group

Summary of mean values by group

normalize

Normalize numeric variable to 0-1 range

ranktransform

(Signed) rank transformation

recode_into

Recode values from one or more variables into a new variable

recode_values

Recode old values of variables into new values

reexports

Objects exported from other packages

remove_empty

Return or remove variables or observations that are completely missing

replace_nan_inf

Convert infinite or NaN values into NA

rescale_weights

Rescale design weights for multilevel analysis

rescale

Rescale Variables to a New Range

reshape_ci

Reshape CI between wide/long formats

reverse

Reverse-Score Variables

row_count

Count specific values row-wise

row_means

Row means or sums (optionally with minimum amount of valid values)

rownames

Tools for working with row names or row ids

skewness

Compute Skewness and (Excess) Kurtosis

slide

Shift numeric value range

smoothness

Quantify the smoothness of a vector

standardize.default

Re-fit a model with standardized data

standardize

Standardization (Z-scoring)

text_format

Convenient text formatting functionalities

to_factor

Convert data to factors

to_numeric

Convert data to numeric

visualisation_recipe

Prepare objects for visualisation

weighted_mean

Weighted Mean, Median, SD, and MAD

winsorize

Winsorize data

A lightweight package to assist in key steps involved in any data analysis workflow: (1) wrangling the raw data to get it in the needed form, (2) applying preprocessing steps and statistical transformations, and (3) compute statistical summaries of data properties and distributions. It is also the data wrangling backend for packages in 'easystats' ecosystem. References: Patil et al. (2022) <doi:10.21105/joss.04684>.

  • Maintainer: Etienne Bacher
  • License: MIT + file LICENSE
  • Last published: 2025-07-17