de_mcmc function

de_mcmc

de_mcmc

Bayesian inference for a deterministic DE model (with models solved via an DE solver) with an observation model.

de_mcmc( N, data, de.model, obs.model, all.params, ref.params = NULL, ref.inits = NULL, Tmax, data.times, cnt = 10, plot = TRUE, sizestep = 0.01, solver = "ode", verbose.mcmc = TRUE, verbose = FALSE, ... )

Arguments

  • N: integer, number of MCMC iterations
  • data: data.frame of time course observations to fit the model to. The observations must be ordered ascending by time.
  • de.model: a function defining a DE model, compliant with the solvers in deSolve or PBSddesolve
  • obs.model: a function defining an observation model. Must be a function with arguments 'data', 'sim.data', 'samp'.
  • all.params: debinfer_parlist containing all model, MCMC, and observation
  • ref.params: an optional named vector containing a set of reference parameters, e.g. the true parameters underlying a simulated data set
  • ref.inits: an optional named vector containing a set of reference initial values, e.g. the true initial values underlying a simulated data set
  • Tmax: maximum timestep for solver
  • data.times: time points for which observations are available
  • cnt: integer interval at which to print and possibly plot information on the current state of the MCMC chain
  • plot: logical, plot traces for all parameters at the interval defined by cnt
  • sizestep: timestep for solver to return values at, only used if data.times is missing
  • solver: the solver to use. 1 or "ode" = deSolve::ode; 2 or "dde" = PBSddesolve::dde; 3 or "dede" = deSolve::dde
  • verbose.mcmc: logical display MCMC progress messages
  • verbose: logical display verbose solver output
  • ...: further arguments to the solver

Returns

a debinfer_result object containing input parameters, data and MCMC samples

  • Maintainer: Philipp H Boersch-Supan
  • License: GPL-3
  • Last published: 2022-11-17