model_profit function

Profit efficiency DEA model.

Profit efficiency DEA model.

Cost, revenue and profit efficiency DEA models.

model_profit(datadea, dmu_eval = NULL, dmu_ref = NULL, price_input = NULL, price_output = NULL, rts = c("crs", "vrs", "nirs", "ndrs", "grs"), L = 1, U = 1, restricted_optimal = TRUE, returnlp = FALSE, ...)

Arguments

  • datadea: A deadata object, including n DMUs, m inputs and s outputs.

  • dmu_eval: A numeric vector containing which DMUs have to be evaluated. If NULL (default), all DMUs are considered.

  • dmu_ref: A numeric vector containing which DMUs are the evaluation reference set. If NULL (default), all DMUs are considered.

  • price_input: Unit prices of inputs for cost or profit efficiency models. It is a value, vector of length m, or matrix m x ne (where ne

    is the length of dmu_eval).

  • price_output: Unit prices of outputs for revenue or profit efficiency models. It is a value, vector of length s, or matrix s x ne.

  • rts: A string, determining the type of returns to scale, equal to "crs" (constant), "vrs" (variable), "nirs" (non-increasing), "ndrs" (non-decreasing) or "grs" (generalized).

  • L: Lower bound for the generalized returns to scale (grs).

  • U: Upper bound for the generalized returns to scale (grs).

  • restricted_optimal: Logical. If it is TRUE, the optimal inputs are restricted to be <= inputs (for cost efficiency models) or the optimal outputs are restricted to be >= outputs (for revenue efficiency models).

  • returnlp: Logical. If it is TRUE, it returns the linear problems (objective function and constraints) of stage 1.

  • ...: Ignored, for compatibility issues.

Examples

# Example 1. Replication of results in Coelli et al. (1998, p.166). # Cost efficiency model. data("Coelli_1998") # Selection of prices: input_prices is the transpose where the prices for inputs are. input_prices <- t(Coelli_1998[, 5:6]) data_example1 <- make_deadata(Coelli_1998, ni = 2, no = 1) result1 <- model_profit(data_example1, price_input = input_prices, rts = "crs", restricted_optimal = FALSE) # notice that the option by default is restricted_optimal = TRUE efficiencies(result1) # Example 2. Revenue efficiency model. data("Coelli_1998") # Selection of prices for output: output_prices is the transpose where the prices for outputs are. output_prices <- t(Coelli_1998[, 7]) data_example2 <- make_deadata(Coelli_1998, ni = 2, no = 1) result2 <- model_profit(data_example2, price_output = output_prices, rts = "crs", restricted_optimal = FALSE) # notice that the option by default is restricted_optimal = TRUE efficiencies(result2) # Example 3. Profit efficiency model. data("Coelli_1998") # Selection of prices for inputs and outputs: input_prices and output_prices are # the transpose where the prices (for inputs and outputs) are. input_prices <- t(Coelli_1998[, 5:6]) output_prices <- t(Coelli_1998[, 7]) data_example3 <- make_deadata(Coelli_1998, ni = 2, no = 1) result3 <- model_profit(data_example3, price_input = input_prices, price_output = output_prices, rts = "crs", restricted_optimal = FALSE) # notice that the option by default is restricted_optimal = TRUE efficiencies(result3)

References

Coelli, T.; Prasada Rao, D.S.; Battese, G.E. (1998). An introduction to efficiency and productivity analysis. Jossey-Bass, San Francisco, pp 73–104. tools:::Rd_expr_doi("10.1002/ev.1441")

See Also

model_deaps, model_nonradial, model_sbmeff

Author(s)

Vicente Coll-Serrano (vicente.coll@uv.es ). Quantitative Methods for Measuring Culture (MC2). Applied Economics.

Vicente Bolós (vicente.bolos@uv.es ). Department of Business Mathematics

Rafael Benítez (rafael.suarez@uv.es ). Department of Business Mathematics

University of Valencia (Spain)

  • Maintainer: Vicente Bolos
  • License: GPL
  • Last published: 2023-05-02

Useful links