datadea: A deadata object with n DMUs, m inputs and s outputs.
dmu_eval: A numeric vector containing which DMUs have to be evaluated. If NULL (default), all DMUs are considered.
dmu_ref: A numeric vector containing which DMUs are the evaluation reference set. If NULL (default), all DMUs are considered.
weight_input: A value, vector of length m, or matrix m x ne (where ne is the length of dmu_eval) with weights to inputs corresponding to the relative importance of items.
weight_output: A value, vector of length m, or matrix m x ne (where ne is the length of dmu_eval) with weights to outputs corresponding to the relative importance of items.
orientation: A string, equal to "no" (non-oriented), "io" (input-oriented) or "oo" (output-oriented).
rts: A string, determining the type of returns to scale, equal to "crs" (constant), "vrs" (variable), "nirs" (non-increasing), "ndrs" (non-decreasing) or "grs" (generalized).
L: Lower bound for the generalized returns to scale (grs).
U: Upper bound for the generalized returns to scale (grs).
kaizen: Logical. If TRUE, the kaizen version of SBM (Tone 2010), also known as SBM-Max, is computed.
maxfr: A list with the maximal friends sets, as it is returned by function maximal_friends. If NULL (default) this list is computed internally.
tol: Numeric, a tolerance margin for checking efficiency (only for the kaizen version).
silent: Logical. If FALSE (default) it prints all the messages from function maximal_friends.
compute_target: Logical. If it is TRUE, it computes targets.
returnlp: Logical. If it is TRUE, it returns the linear problems (objective function and constraints). If kaizen is TRUE it is ignored.
...: Other options (currently not implemented)
Examples
# Example 1. Replication of results in Tone (2001, p.505)data("Tone2001")data_example <- make_deadata(Tone2001, ni =2, no =2)result_SBM <- model_sbmeff(data_example, orientation ="no", rts ="crs")result_CCR <- model_basic(data_example, orientation ="io", rts ="crs")efficiencies(result_SBM)efficiencies(result_CCR)slacks(result_SBM)slacks(result_CCR)# Example 2. Replication of results in Tone (2003), pp 10-11 case 1:1.data("Tone2003")data_example <- make_deadata(Tone2003, ni =1, no =2, ud_outputs =2)result <- model_sbmeff(data_example, rts ="vrs")efficiencies(result)targets(result)# Example 3. Replication of results in Aparicio (2007).data("Airlines")datadea <- make_deadata(Airlines, inputs =4:7, outputs =2:3)result <- model_sbmeff(datadea = datadea, kaizen =TRUE)efficiencies(result)targets(result)
References
Tone, K. (2001). "A Slacks-Based Measure of Efficiency in Data Envelopment Analysis", European Journal of Operational Research, 130, 498-509. tools:::Rd_expr_doi("10.1016/S0377-2217(99)00407-5")
Tone, K. (2010). "Variations on the theme of slacks-based measure of efficiency in DEA", European Journal of Operational Research, 200, 901-907. tools:::Rd_expr_doi("10.1016/j.ejor.2009.01.027")
Cooper, W.W.; Seiford, L.M.; Tone, K. (2007). Data Envelopment Analysis. A Comprehensive Text with Models, Applications, References and DEA-Solver Software. 2nd Edition. Springer, New York. tools:::Rd_expr_doi("10.1007/978-0-387-45283-8")
Aparicio, J.; Ruiz, J.L.; Sirvent, I. (2007) "Closest targets and minimum distance to the Pareto-efficient frontier in DEA", Journal of Productivity Analysis, 28, 209-218. tools:::Rd_expr_doi("10.1007/s11123-007-0039-5")