PMLE.Clayton.Exponential function

Parametric Inference for Bivariate Exponential Models with Dependent Truncation

Parametric Inference for Bivariate Exponential Models with Dependent Truncation

Maximum likelihood estimation (MLE) for dependent truncation data under the Clayton copula with Exponential margins for a bivariate lifetimes (L, X). The truncated data (L_j, X_j), subject to L_j<=X_j for all j=1, ..., n, are used to obtain the MLE for the population parameters of (L, X).

PMLE.Clayton.Exponential(l.trunc, x.trunc, GOF = TRUE, Err=3, alpha_max=20,alpha_min=10^-4)

Arguments

  • l.trunc: vector of truncation variables satisfying l.trunc<=x.trunc
  • x.trunc: vector of variables satisfying l.trunc<=x.trunc
  • GOF: if TRUE, a goodness-of-fit test statistics is computed
  • Err: tuning parameter in the NR algorithm
  • alpha_max: upper bound for the copula parameter
  • alpha_min: lower bound for the copula parameter

Details

Original paper is submitted for review

Returns

  • n: sample size

  • alpha: dependence parameter

  • lambda_L: scale parameter of L

  • lambda_X: scale parameter of X

  • mean_X: Mean lifetime of X, defined as E[X]

  • logL: Maximized log-likelihood

  • c: inclusion probability, defined by c=Pr(L<=X)

  • C: Cramer-von Mises goodness-of-fit test statistics

  • K: Kolmogorov-Smirnov goodness-of-fit test statistics

References

Emura T, Pan CH (2017), Parametric likelihood inference and goodness-of-fit for dependently left-truncated data, a copula-based approach, Statistical Papers, doi:10.1007/s00362-017-0947-z.

Author(s)

Takeshi Emura, Chi-Hung Pan

Examples

l.trunc=c(22.207,23.002,23.982,28.551,21.789,17.042,25.997,23.220,18.854,21.857, 27.321,13.767,23.982,20.110,15.779,26.821,27.934,15.292,28.843,15.985, 23.580,53.770,21.731,28.844,17.046,16.506,15.696,27.959,13.272,16.482, 24.210,17.626,27.770, 18.264,17.694,20.014,13.152,16.886,14.894,15.531,6.951,15.841,14.974, 38.292,11.204,38.156,26.652,17.101,28.953,18.325,18.391,18.220,15.896, 16.447,23.642,19.170,23.257,20.428,20.947,28.462,23.210,17.900,46.134, 39.300,11.768,17.717, 30.863,22.350,44.976,18.169,30.164,21.822,18.201,22.895,27.189,10.915, 25.503,12.350,39.869,17.698,26.296,14.091,21.011,11.201,10.757,25.692, 32.372,13.592,19.102,16.112,53.281,57.298,36.450,19.651,20.755,30.788,20.0,39.62) x.trunc = c(38.701,49.173,42.409,73.823,46.738,44.071,61.904,39.327,49.828,46.314, 56.150,50.549,54.930,54.039,49.170,44.795,72.238,107.783,81.609,45.228, 124.637,64.018,82.957,143.550,43.382,69.644,74.750,32.881,51.483,31.767, 77.633,63.745,82.965, 24.818,68.762,68.762,89.100,64.979,65.127,59.289,53.926,79.370,47.385, 61.395,72.826,53.980,37.220,44.224,50.826,65.460,86.726,43.819,100.605, 67.615,89.542,60.266,103.580,82.570,87.960,42.385,68.914,95.666,78.135, 83.643,18.617,92.629, 42.415,34.346,106.569,20.758,52.003,77.179, 68.934,78.661,165.543,79.547, 55.009,46.774,124.526,92.504,109.986,101.161,59.422,27.772,33.598,69.038, 75.222,58.373,105.610,56.158,55.913,83.770,123.468,68.994,101.869,87.627, 38.790,74.734) u.min=10 l.trunc=l.trunc[-41]-u.min x.trunc=x.trunc[-41]-u.min PMLE.Clayton.Exponential(l.trunc,x.trunc)
  • Maintainer: Takeshi Emura
  • License: GPL-2
  • Last published: 2018-02-27

Useful links