Parametric Inference for Bivariate Weibull Models with Dependent Truncation
Parametric Inference for Bivariate Weibull Models with Dependent Truncation
Maximum likelihood estimation (MLE) for dependent truncation data under the Clayton copula with Weibull margins for a bivariate lifetimes (L, X). The truncated data (L_j, X_j), subject to L_j<=X_j for all j=1, ..., n, are used to obtain the MLE for the population parameters of (L, X).
l.trunc: vector of truncation variables satisfying l.trunc<=x.trunc
x.trunc: vector of variables satisfying l.trunc<=x.trunc
GOF: if TRUE, a goodness-of-fit test statistics is computed
Err: tuning parameter in the NR algorithm
alpha_max: upper bound for the copula parameter
alpha_min: lower bound for the copula parameter
Details
Relevant paper is submitted for review
Returns
n: sample size
alpha: dependence parameter
lambda_L: scale parameter of L
lambda_X: scale parameter of X
nu_L: shape parameter of L
nu_X: shape parameter of X
mean_X: Mean lifetime of X, defined as E[X]
logL: Maximized log-likelihood
c: inclusion probability, defined by c=Pr(L<=X)
C: Cramer-von Mises goodness-of-fit test statistics
K: Kolmogorov-Smirnov goodness-of-fit test statistics
References
Emura T, Pan CH (2017), Parametric likelihood inference and goodness-of-fit for dependently left-truncated data, a copula-based approach, Statistical Papers, doi:10.1007/s00362-017-0947-z.