cmulti function

Conditional Multinomial Maximum Likelihood Estimation

Conditional Multinomial Maximum Likelihood Estimation

Conditional Multinomial Maximum Likelihood Estimation for different sampling methodologies.

cmulti(formula, data, type = c("rem", "mix", "dis", "fmix"), inits = NULL, method = "Nelder-Mead", ...) cmulti.fit(Y, D, X=NULL, type=c("rem", "mix", "dis", "fmix"), inits=NULL, method="Nelder-Mead", ...) cmulti2.fit(Y, D1, D2, X1=NULL, X2=NULL, inits=NULL, method="Nelder-Mead", ...) ## S3 method for class 'cmulti' fitted(object, ...) ## S3 method for class 'cmulti' model.frame(formula, ...) ## S3 method for class 'cmulti' model.matrix(object, ...) ## S3 method for class 'cmulti' predict(object, newdata = NULL, type = c("link", "response"), ...)

Arguments

  • formula: formula, LHS takes 2 matrices in the form of Y | D, RHS is either 1 or some covariates, see Examples.

  • data: data.

  • type: character, one of "rem" (removal sampling, homogeneous singing rates), "mix" and "fmix" (removal sampling, heterogeneous singing rates, "mix" implies that 'phi' is constant but 'c' can vary; "fmix" implies that 'c' is constant but 'phi' can vary), "dis" (distance sampling, half-normal detection function for point counts, circular area). For the predict method it is the type

    of prediction required; the default is on the scale of the linear predictors; the alternative "response" is on the scale of the response variable.

  • Y: this contains the cell counts. cmulti.fit requires that Y is a matrix (observations x intervals), dimensions and pattern in NAs must match that of D. cmulti2.fit requires that Y is a 3-dimensional array (observations x time intervals x distance intervals), dimensions and pattern in NAs must match that of D1 and D2.

  • D, D1, D2: design matrices, that describe the interval endpoints for the sampling methodology, dimensions must match dimensions of Y.

  • X, X1, X2: design matrices, X is the matrix with covariates for the removal/distance sampling parameters. X1 is the matrix with covariates for the removal, X2 is the matrix with covariates for the distance sampling parameters.

  • inits: optional initial values.

  • method: method for optim.

  • object: fitted model object.

  • newdata: optionally, a data frame in which to look for variables with which to predict. If omitted, the fitted linear predictors are used.

  • ...: additional options for optim.

Details

Conditional Multinomial Maximum Likelihood Estimation for different sampling methodologies.

Returns

An object of class 'cmulti'.

References

Solymos, P., Matsuoka, S. M., Bayne, E. M., Lele, S. R., Fontaine, P., Cumming, S. G., Stralberg, D., Schmiegelow, F. K. A. & Song, S. J., 2013. Calibrating indices of avian density from non-standardized survey data: making the most of a messy situation. Methods in Ecology and Evolution, 4 , 1047--1058. doi:10.1111/2041-210X.12106

Solymos, P., Matsuoka, S. M., Cumming, S. G., Stralberg, D., Fontaine, P., Schmiegelow, F. K. A., Song, S. J., and Bayne, E. M., 2018. Evaluating time-removal models for estimating availability of boreal birds during point-count surveys: sample size requirements and model complexity. Condor, 120 , 765--786. doi:10.1650/CONDOR-18-32.1

Supporting info, including a tutorial for the QPAD method: https://github.com/psolymos/QPAD/tree/master/inst/doc/v2

Author(s)

Peter Solymos

Examples

simfun1 <- function(n = 10, phi = 0.1, c=1, tau=0.8, type="rem") { if (type=="dis") { Dparts <- matrix(c(0.5, 1, NA, 0.5, 1, Inf, 1, Inf, NA), 3, 3, byrow=TRUE) D <- Dparts[sample.int(3, n, replace=TRUE),] CP <- 1-exp(-(D/tau)^2) } else { Dparts <- matrix(c(5, 10, NA, 3, 5, 10, 3, 5, NA), 3, 3, byrow=TRUE) D <- Dparts[sample.int(3, n, replace=TRUE),] CP <- 1-c*exp(-D*phi) } k <- ncol(D) P <- CP - cbind(0, CP[, -k, drop=FALSE]) Psum <- rowSums(P, na.rm=TRUE) PPsum <- P / Psum Pok <- !is.na(PPsum) N <- rpois(n, 10) Y <- matrix(NA, ncol(PPsum), nrow(PPsum)) Ypre <- sapply(1:n, function(i) rmultinom(1, N, PPsum[i,Pok[i,]])) Y[t(Pok)] <- unlist(Ypre) Y <- t(Y) list(Y=Y, D=D) } n <- 200 x <- rnorm(n) X <- cbind(1, x) ## removal, constant vv <- simfun1(n=n, phi=exp(-1.5)) m1 <- cmulti(vv$Y | vv$D ~ 1, type="rem") coef(m1) ## mixture, constant (mix and fmix are identical) vv <- simfun1(n=n, phi=exp(-1.5), c=plogis(0.8)) m2 <- cmulti(vv$Y | vv$D ~ 1, type="mix") coef(m2) m2f <- cmulti(vv$Y | vv$D ~ 1, type="fmix") coef(m2f) ## dist, constant vv <- simfun1(n=n, tau=exp(-0.2), type="dis") m3 <- cmulti(vv$Y | vv$D ~ 1, type="dis") coef(m3) ## removal, not constant log.phi <- crossprod(t(X), c(-2,-1)) vv <- simfun1(n=n, phi=exp(cbind(log.phi, log.phi, log.phi))) m1 <- cmulti(vv$Y | vv$D ~ x, type="rem") coef(m1) ## mixture, fixed phi, varying c logit.c <- crossprod(t(X), c(-2,1)) vv <- simfun1(n=n, phi=exp(-1.5), c=plogis(cbind(logit.c, logit.c, logit.c))) m2 <- cmulti(vv$Y | vv$D ~ x, type="mix") coef(m2) ## mixture, varying phi, fixed c log.phi <- crossprod(t(X), c(-2,-1)) vv <- simfun1(n=n, phi=exp(cbind(log.phi, log.phi, log.phi)), c=plogis(0.8)) m2f <- cmulti(vv$Y | vv$D ~ x, type="fmix") coef(m2f) ## dist, not constant log.tau <- crossprod(t(X), c(-0.5,-0.2)) vv <- simfun1(n=n, tau=exp(cbind(log.tau, log.tau, log.tau)), type="dis") m3 <- cmulti(vv$Y | vv$D ~ x, type="dis") coef(m3) summary(m3) coef(m3) vcov(m3) AIC(m3) confint(m3) logLik(m3) ## fitted values plot(exp(log.tau), fitted(m3)) ## prediction for new locations (type = 'rem') ndf <- data.frame(x=seq(-1, 1, by=0.1)) summary(predict(m1, newdata=ndf, type="link")) summary(pr1 <- predict(m1, newdata=ndf, type="response")) ## turing singing rates into probabilities requires total duration ## 5 minutes used here psing <- 1-exp(-5*pr1) plot(ndf$x, psing, type="l", ylim=c(0,1)) ## prediction for new locations (type = 'dis') summary(predict(m3, newdata=ndf, type="link")) summary(pr3 <- predict(m3, newdata=ndf, type="response")) ## turing EDR into probabilities requires finite truncation distances ## r=0.5 used here (50 m) r <- 0.5 pdet <- pr3^2*(1-exp(-r^2/pr3^2))/r^2 plot(ndf$x, pdet, type="l", ylim=c(0,1)) ## joint removal-distance estimation ## is not different from 2 orthogonal estimations simfun12 <- function(n = 10, phi = 0.1, c=1, tau=0.8, type="rem") { Flat <- function(x, DIM, dur=TRUE) { x <- array(x, DIM) if (!dur) { x <- aperm(x,c(1,3,2)) } dim(x) <- c(DIM[1], DIM[2]*DIM[3]) x } Dparts1 <- matrix(c(5, 10, NA, 3, 5, 10, 3, 5, NA), 3, 3, byrow=TRUE) D1 <- Dparts1[sample.int(3, n, replace=TRUE),] CP1 <- 1-c*exp(-D1*phi) Dparts2 <- matrix(c(0.5, 1, NA, 0.5, 1, Inf, 1, Inf, NA), 3, 3, byrow=TRUE) D2 <- Dparts2[sample.int(3, n, replace=TRUE),] CP2 <- 1-exp(-(D2/tau)^2) k1 <- ncol(D1) k2 <- ncol(D2) DIM <- c(n, k1, k2) P1 <- CP1 - cbind(0, CP1[, -k1, drop=FALSE]) P2 <- CP2 - cbind(0, CP2[, -k2, drop=FALSE]) Psum1 <- rowSums(P1, na.rm=TRUE) Psum2 <- rowSums(P2, na.rm=TRUE) Pflat <- Flat(P1, DIM, dur=TRUE) * Flat(P2, DIM, dur=FALSE) PsumFlat <- Psum1 * Psum2 PPsumFlat <- Pflat / PsumFlat PokFlat <- !is.na(PPsumFlat) N <- rpois(n, 10) Yflat <- matrix(NA, ncol(PPsumFlat), nrow(PPsumFlat)) YpreFlat <- sapply(1:n, function(i) rmultinom(1, N, PPsumFlat[i,PokFlat[i,]])) Yflat[t(PokFlat)] <- unlist(YpreFlat) Yflat <- t(Yflat) Y <- array(Yflat, DIM) k1 <- dim(Y)[2] k2 <- dim(Y)[3] Y1 <- t(sapply(1:n, function(i) { count <- rowSums(Y[i,,], na.rm=TRUE) nas <- rowSums(is.na(Y[i,,])) count[nas == k2] <- NA count })) Y2 <- t(sapply(1:n, function(i) { count <- colSums(Y[i,,], na.rm=TRUE) nas <- colSums(is.na(Y[i,,])) count[nas == k2] <- NA count })) list(Y=Y, D1=D1, D2=D2, Y1=Y1, Y2=Y2) } ## removal and distance, constant vv <- simfun12(n=n, phi=exp(-1.5), tau=exp(-0.2)) res <- cmulti2.fit(vv$Y, vv$D1, vv$D2) res1 <- cmulti.fit(vv$Y1, vv$D1, NULL, "rem") res2 <- cmulti.fit(vv$Y2, vv$D2, NULL, "dis") ## points estimates are identical cbind(res$coef, c(res1$coef, res2$coef)) ## standard errors are identical cbind(sqrt(diag(res$vcov)), c(sqrt(diag(res1$vcov)),sqrt(diag(res2$vcov)))) ## removal and distance, not constant vv <- simfun12(n=n, phi=exp(cbind(log.phi, log.phi, log.phi)), tau=exp(cbind(log.tau, log.tau, log.tau))) res <- cmulti2.fit(vv$Y, vv$D1, vv$D2, X1=X, X2=X) res1 <- cmulti.fit(vv$Y1, vv$D1, X, "rem") res2 <- cmulti.fit(vv$Y2, vv$D2, X, "dis") ## points estimates are identical cbind(res$coef, c(res1$coef, res2$coef)) ## standard errors are identical cbind(sqrt(diag(res$vcov)), c(sqrt(diag(res1$vcov)),sqrt(diag(res2$vcov))))
  • Maintainer: Peter Solymos
  • License: GPL-2
  • Last published: 2023-03-08