Binomial-Poisson, Binomial-NegBin, Binomial-ZIP, and Binomial-ZINB models with single visit.
svabu(formula, data, zeroinfl =TRUE, area =1, N.max =NULL, inits, link.det ="logit", link.zif ="logit", model =TRUE, x =FALSE, distr = c("P","NB"),...)svabu.fit(Y, X, Z, Q =NULL, zeroinfl =TRUE, area =1, N.max =NULL, inits, link.det ="logit", link.zif ="logit",...)svabu_nb.fit(Y, X, Z, Q =NULL, zeroinfl =TRUE, area =1, N.max =NULL, inits, link.det ="logit", link.zif ="logit",...)zif(x)is.present(object,...)predictMCMC(object,...)svabu.step(object, model, trace =1, steps =1000, criter = c("AIC","BIC"), test =FALSE, k =2, control,...)
Arguments
formula: formula of the form y ~ x | z, where y is a vector of observations, x is the set of covariates for the occurrence model, z is the set of covariates for the detection model. x can further expanded as x1 + zif(x2) into terms for the nonzero count data part (x1) and the zero inflation component (zif(x2)) using the zif special.
Y, X, Z, Q: vector of observation, design matrix for abundance model, design matrix for detection and design matrix for zero inflation model
data: data
area: area
N.max: maximum of true count values (for calculating the integral)
zeroinfl: logical, if the Binomial-ZIP model should be fitted
inits: initial values used by link{optim}
link.det, link.zif: link function for the detection and zero inflation parts of the model
model: a logical value indicating whether model frame should be included as a component of the returned value, or true state or detection model
x: logical values indicating whether the response vector and model matrix used in the fitting process should be returned as components of the returned value. For the function zif it is any object to be returned.
object: a fitted object.
trace: info returned during the procedure
steps: max number of steps
criter: criterion to be minimized (cAUC=1-AUC)
test: logical, if decrease in deviance should be tested
k: penalty to be used with AIC
control: controls for optimization, if missing taken from object
distr: character, abundance distribution: "P" for Poisson, "NB" for Negative Binomial.
...: other arguments passed to the functions
Details
See Examples.
The right hand side of the formula must contain at least one continuous (i.e. non discrete/categorical) covariate. This is the necessary condition for the single-visit method to be valid and parameters to be identifiable. See References for more detailed description.
The Binomial-Poisson model is the single visit special case of the N-mixture model proposed by Royle (2004) and explained in Solymos et a. (2012) and Solymos and Lele (2016).
Returns
An object of class 'svabu'.
References
Royle, J. A. 2004. N-Mixture Models for Estimating Population Size from Spatially Replicated Counts. Biometrics, 60(1) , 108--115. doi:10.1111/j.0006-341X.2004.00142.x
Solymos, P., Lele, S. R. and Bayne, E. 2012. Conditional likelihood approach for analyzing single visit abundance survey data in the presence of zero inflation and detection error. Environmetrics, 23 , 197--205. doi:10.1002/env.1149
Solymos, P., Lele, S. R. 2016. Revisiting resource selection probability functions and single-visit methods: clarification and extensions. Methods in Ecology and Evolution, 7 , 196--205. doi:10.1111/2041-210X.12432
Denes, F., Solymos, P., Lele, S. R., Silveira, L. & Beissinger, S. 2017. Biome scale signatures of land use change on raptor abundance: insights from single-visit detection-based models. Journal of Applied Ecology, 54 , 1268--1278. doi:10.1111/1365-2664.12818
Author(s)
Peter Solymos and Subhash Lele
Examples
data(databu)## fit BZIP and BP modelsm00 <- svabu(Y ~ x1 + x5 | x2 + x5, databu[1:200,])## print methodm00
## summary: CMLEsummary(m00)## coefcoef(m00)coef(m00, model="sta")## state (abundance)coef(m00, model="det")## detectioncoef(m00, model="zif")## zero inflation (this is part of the 'true state'!)## Not run:## Diagnostics and model comparisonm01 <- svabu(Y ~ x1 + x5 | x2 + x5, databu[1:200,], zeroinfl=FALSE)## compare estimates (note, zero inflation is on the logit scale!)cbind(truth=c(2,-0.8,0.5,1,2,-0.5, plogis(0.3)),"B-ZIP"=coef(m00),"B-P"=c(coef(m01),NA))## fittedplot(fitted(m00), fitted(m01))abline(0,1)## compare modelsAIC(m00, m01)BIC(m00, m01)logLik(m00)logLik(m01)## diagnostic plotplot(m00)plot(m01)## Bootstrap## non parametric bootstrap## - initial values are the estimatesm02 <- bootstrap(m00, B=25)attr(m02,"bootstrap")extractBOOT(m02)summary(m02)summary(m02, type="cmle")summary(m02, type="boot")## vcovvcov(m02, type="cmle")vcov(m02, type="boot")vcov(m02, model="sta")vcov(m02, model="det")## confintconfint(m02, type="cmle")## Wald-typeconfint(m02, type="boot")## quantile based## parametric bootstrapsimulate(m00,5)m03 <- bootstrap(m00, B=5, type="param")extractBOOT(m03)summary(m03)## Model selectionm04 <- svabu(Y ~ x1 + x5 | x2 + x5 + x3, databu[1:200,], phi.boot=0)m05 <- drop1(m04, model="det")m05
m06 <- svabu.step(m04, model="det")summary(m06)m07 <- update(m04, . ~ . | . - x3)m07
## Controlsm00$control
getOption("detect.optim.control")getOption("detect.optim.method")options("detect.optim.method"="BFGS")m08 <- svabu(Y ~ x1 + x5 | x2 + x5, databu[1:100,])m08$control ## but original optim method is retained during model selection and bootstrap## fitted models can be used to provide initial valuesoptions("detect.optim.method"="Nelder-Mead")m09 <- svabu(Y ~ x1 + x5 | x2 + x5, databu[1:100,], inits=coef(m08))## Ovenbirds datasetdata(oven)ovenc <- oven
ovenc[, c(4:8,10:11)][]<- lapply(ovenc[, c(4:8,10:11)], scale)moven <- svabu(count ~ pforest | observ + pforest + julian + timeday, ovenc)summary(moven)drop1(moven, model="det")moven2 <- update(moven, . ~ . | . - timeday)summary(moven2)moven3 <- update(moven2, . ~ . | ., zeroinfl=FALSE)summary(moven3)BIC(moven, moven2, moven3)## End(Not run)