formula: formula of the form y ~ x | z, where y is a vector of observations, x is the set of covariates for the occurrence model, z is the set of covariates for the detection model
Y, X, Z: vector of observation, design matrix for occurrence model, and design matrix for detection model
data: data
link.sta, link.det: link function for the occurrence (true state) and detection model
penalized: logical, if penalized likelihood estimate should be computed
method: optimization or data cloning to be used as optimization
inits: initial values
model: a logical value indicating whether model frame should be included as a component of the returned value, or true state or detection model
x: logical values indicating whether the response vector and model matrix used in the fitting process should be returned as components of the returned value
auc: logical, if AUC should be calculated
object: a fitted model object
trace: info returned during the procedure
steps: max number of steps
criter: criterion to be minimized (cAUC=1-AUC)
test: logical, if decrease in deviance should be tested
k: penalty to be used with AIC
control: controls for optimization, if missing taken from object
...: other arguments passed to the functions
Details
See Examples.
The right hand side of the formula must contain at least one continuous (i.e. non discrete/categorical) covariate. This is the necessary condition for the single-visit method to be valid and parameters to be identifiable. See References for more detailed description.
Returns
An object of class 'svocc'.
References
Lele, S.R., Moreno, M. and Bayne, E. 2011. Dealing with detection error in site occupancy surveys: What can we do with a single survey? Journal of Plant Ecology, 5(1) , 22--31. doi:10.1093/jpe/rtr042
Moreno, M. and Lele, S. R. 2010. Improved estimation of site occupancy using penalized likelihood. Ecology, 91 , 341--346. doi:10.1890/09-1073.1
Solymos, P., Lele, S. R. 2016. Revisiting resource selection probability functions and single-visit methods: clarification and extensions. Methods in Ecology and Evolution, 7 , 196--205. doi:10.1111/2041-210X.12432
Author(s)
Peter Solymos and Monica Moreno
Examples
data(datocc)## MLEm00 <- svocc(W ~ x1 | x1 + x3, datocc)## PMLEm01 <- svocc(W ~ x1 | x1 + x3, datocc, penalized=TRUE)## printm00
## summarysummary(m00)## coefficientscoef(m00)## state (occupancy) model estimatescoef(m00,"sta")## detection model estimatescoef(m00,"det")## compare estimatescbind(truth=c(0.6,0.5,0.4,-0.5,0.3),mle=coef(m00), pmle=coef(m01))## AIC, BICAIC(m00)BIC(m00)## log-likelihoodlogLik(m00)## variance-covariance matrixvcov(m00)vcov(m00, model="sta")vcov(m00, model="det")## confidence intervalsconfint(m00)confint(m00, model="sta")confint(m00, model="det")## fitted values## (conditional probability of occurrence given detection history:## if W=1, fitted=1,## if W=0, fitted=(phi*(1-delta)) / ((1-delta) + phi * (1-delta))summary(fitted(m00))## estimated probabilities: (phi*(1-delta)) / ((1-delta) + phi * (1-delta))summary(m00$estimated.probabilities)## probability of occurrence (phi)summary(m00$occurrence.probabilities)## probability of detection (delta)summary(m00$detection.probabilities)## Not run:## model selectionm02 <- svocc(W ~ x1 | x3 + x4, datocc)m03 <- drop1(m02, model="det")## dropping one term at a time, resulting change in AICm03
## updating the modelm04 <- update(m02, . ~ . | . - x4)m04
## automatic model selection## part of the model (sta/det) must be specifiedm05 <- svocc.step(m02, model="det")summary(m05)## nonparametric bootstrapm06 <- bootstrap(m01, B=25)attr(m06,"bootstrap")extractBOOT(m06)summary(m06, type="mle")summary(m06, type="pmle")## no SEs! PMLE!!!summary(m06, type="boot")## vcov#vcov(m06, type="mle") ## this does not work with PMLEvcov(m06, type="boot")## this works## confintconfint(m06, type="boot")## quantile based## parametric bootstrap## sthis is how observations are simulatedhead(simulate(m01,5))m07 <- bootstrap(m01, B=25, type="param")extractBOOT(m07)summary(m07)data(oven)ovenc <- oven
ovenc[, c(4:8,10:11)][]<- lapply(ovenc[, c(4:8,10:11)], scale)ovenc$count01 <- ifelse(ovenc$count >0,1,0)moven <- svocc(count01 ~ pforest | julian + timeday, ovenc)summary(moven)drop1(moven, model="det")moven2 <- update(moven, . ~ . | . - timeday)summary(moven)BIC(moven, moven2)AUC(moven, moven2)rocplot(moven)rocplot(moven2, col=2, add=TRUE)## End(Not run)