dataSrc: a connection to a dexter database, a matrix, or a data.frame with columns: person_id, item_id, item_score
parms: An object returned by function fit_enorm containing parameter estimates or a data.frame with columns item_id, item_score and, beta. If parms are provided, item parameters are considered known. If parms is NULL, they will be estimated Bayesianly.
predicate: an expression to filter data. If missing, the function will use all data in dataSrc
covariates: name or a vector of names of the variables to group the populations used to improve the prior. A covariate must be a discrete person property (e.g. not a float) that indicates nominal categories, e.g. gender or school. If dataSrc is a data.frame, it must contain the covariate.
nPV: Number of plausible values to draw per person.
parms_draw: when the item parameters are estimated with method "Bayes" (see: fit_enorm), parms_draw specifies whether to use a sample (a different item parameter draw for each plausible values draw) or the posterior mean of the item draws. Alternatively, it can be an integer specifying a specific draw. It is ignored when parms is not estimated Bayesianly.
prior_dist: use a normal prior for the plausible values or a mixture of two normals. A mixture is only possible when there are no covariates.
merge_within_persons: If a person took multiple booklets, this indicates whether plausible values are generated per person (TRUE) or per booklet (FALSE)
Returns
A data.frame with columns booklet_id, person_id, booklet_score, any covariate columns, and nPV plausible values named PV1...PVn.
Details
When the item parameters are estimated using fit_enorm(..., method='Bayes') and parms_draw = 'sample', the uncertainty of the item parameters estimates is taken into account when drawing multiple plausible values.
In there are covariates, the prior distribution is a hierarchical normal with equal variances across groups. When there is only one group this becomes a regular normal distribution. When there are no covariates and prior_dist = "mixture", the prior is a mixture distribution of two normal distributions which gives a little more flexibility than a normal prior.
Examples
db = start_new_project(verbAggrRules,":memory:", person_properties=list(gender="<unknown>"))add_booklet(db, verbAggrData,"agg")add_item_properties(db, verbAggrProperties)f=fit_enorm(db)pv_M=plausible_values(db,f,(mode=="Do")&(gender=="Male"))pv_F=plausible_values(db,f,(mode=="Do")&(gender=="Female"))par(mfrow=c(1,2))plot(ecdf(pv_M$PV1), main="Do: males versus females", xlab="Ability", col="red")lines(ecdf(pv_F$PV1), col="green")legend(-2.2,0.9, c("female","male"), lty=1, col=c('green','red'), bty='n', cex=.75)pv_M=plausible_values(db,f,(mode=="Want")&(gender=="Male"))pv_F=plausible_values(db,f,(mode=="Want")&(gender=="Female"))plot(ecdf(pv_M$PV1), main="Want: males versus females", xlab=" Ability", col="red")lines(ecdf(pv_F$PV1),col="green")legend(-2.2,0.9, c("female","male"), lty=1, col=c('green','red'), bty='n', cex=.75)close_project(db)
References
Marsman, M., Maris, G., Bechger, T. M., and Glas, C.A.C. (2016) What can we learn from plausible values? Psychometrika. 2016; 81: 274-289. See also the vignette.