An S4 class for the Bernstein mechanism of differential privacy.
An S4 class for the Bernstein mechanism of differential privacy.
A class that implements the Bernstein mechanism (not iterated version) of differential privacy, for privatizing release of real-valued functions on [0,1]l based on arbitrary datasets. Approximates the target
on a lattice.
class
## S4 method for signature 'DPMechBernstein'show(object)## S4 method for signature 'DPMechBernstein,DPParamsEps'releaseResponse(mechanism, privacyParams, X)## S4 method for signature 'DPMechBernstein'sensitivityNorm(mechanism, X1, X2)
Arguments
object: an instance of class DPMech.
mechanism: an object of class DPMechBernstein.
privacyParams: an object of class DPParamsEps.
X: a privacy-sensitive dataset, if using sensitivity sampler a: list, matrix, data frame, numeric/character vector.
X1: a privacy-sensitive dataset.
X2: a privacy-sensitive dataset.
Returns
list with slots per argument, actual privacy parameter and response: mechanism response with length of target release: privacyParams, sensitivity, latticeK, dims, target, response.
scalar numeric norm of non-private target on datasets. The L∞ of the functions on a lattice.
sensitivity: non-negative scalar numeric maximum absolute target
sensitivity maximized over the lattice. Defaults to `Inf` for use with `sensitivitySampler()`.
target: might be a closure that takes arbitrary dataset and returns a real-valued function on [0,1]l.
gammaSensitivity: NA_real_ if inactive, or scalar in [0,1) indicating that responses must be RDP with specific confidence.
latticeK: positive scalar integer-valued numeric specifying the lattice resolution. Defaults to (invalid) NA_integer_.
dims: positive scalar integer-valued numeric specifying the dimension of released function domain. Defaults to (invalid) NA_integer_.
Examples
## See the bernstein vignette
References
Francesco Aldà and Benjamin I. P. Rubinstein. "The Bernstein Mechanism: Function Release under Differential Privacy", in Proceedings of the 31st AAAI Conference on Artificial Intelligence (AAAI'2017), pp. 1705-1711, Feb 2017.