check_point_location function

Check point location

Check point location

The function check_point_location() checks if points that were found by the gep_by_nera() function sit on specified confidence region bounds (CRB\textit{CRB}) or not. This is necessary because the points found by aid of the Method of Lagrange Multipliers (MLM) and Newton-Raphson (nera) optimisation may not sit on the CRB\textit{CRB}.

check_point_location(lpt, lhs)

Arguments

  • lpt: A list returned by the gep_by_nera() function.

  • lhs: A list of the estimates of Hotelling's two-sample T2T^2

    statistic for small samples as returned by the function get_T2_two().

Returns

The function returns the list that was passed in via the lpt

parameter with a modified points.on.crb element, i.e. set as TRUE if the points sit on the CRB\textit{CRB} or FALSE if they do not sit on the CRB\textit{CRB}.

Details

The function check_point_location() checks if points that were found by the gep_by_nera() function sit on specified confidence region bounds (CRB\textit{CRB}) or not. The gep_by_nera() function determines the points on the CRB\textit{CRB} for each of the npn_p time points or model parameters by aid of the Method of Lagrange Multipliers (MLM) and by Newton-Raphson (nera) optimisation, as proposed by Margaret Connolly (Connolly 2000). However, since the points found may not sit on the specified CRB\textit{CRB}, it must be checked if the points returned by the gep_by_nera() function do sit on the CRB\textit{CRB}

or not.

Examples

# Collecting the required information time_points <- suppressWarnings(as.numeric(gsub("([^0-9])", "", colnames(dip1)))) tcol <- which(!is.na(time_points)) b1 <- dip1$type == "R" tol <- 1e-9 # Hotelling's T2 statistics l_hs <- get_T2_two(m1 = as.matrix(dip1[b1, tcol]), m2 = as.matrix(dip1[!b1, tcol]), signif = 0.05) # Calling gep_by_nera() res <- gep_by_nera(n_p = as.numeric(l_hs[["Parameters"]]["df1"]), kk = as.numeric(l_hs[["Parameters"]]["K"]), mean_diff = l_hs[["means"]][["mean.diff"]], m_vc = l_hs[["S.pool"]], ff_crit = as.numeric(l_hs[["Parameters"]]["F.crit"]), y = rep(1, times = l_hs[["Parameters"]]["df1"] + 1), max_trial = 100, tol = tol) # Expected result in res[["points.on.crb"]] # [1] NA # Check if points lie on the confidence region bounds (CRB) check_point_location(lpt = res, lhs = l_hs) # Expected result in res[["points.on.crb"]] # [1] TRUE

References

Tsong, Y., Hammerstrom, T., Sathe, P.M., and Shah, V.P. Statistical assessment of mean differences between two dissolution data sets. Drug Inf J. 1996; 30 : 1105-1112.

tools:::Rd_expr_doi("10.1177/009286159603000427")

Connolly, M. SAS(R) IML Code to calculate an upper confidence limit for multivariate statistical distance; 2000; Wyeth Lederle Vaccines, Pearl River, NY.

https://analytics.ncsu.edu/sesug/2000/p-902.pdf

See Also

mimcr, gep_by_nera.

  • Maintainer: Pius Dahinden
  • License: GPL (>= 2)
  • Last published: 2025-03-24