This is a method for the function summary() for objects of class ‘bootstrap_f2’ .
## S3 method for class 'bootstrap_f2'summary(object,...)
Arguments
object: An object of class ‘bootstrap_f2’ returned by the bootstrap_f2() function.
...: Further arguments passed to or from other methods or arguments that can be passed down to the print.boot() and print.bootci() functions.
Returns
The ‘bootstrap_f2’ object passed to the object
parameter is returned invisibly.
Details
The elements Boot and CI of the ‘bootstrap_f2’ object that is returned by the function bootstrap_f2() are objects of type ‘boot’ and ‘bootci’ , respectively, generated by the functions boot() and boot.ci(), respectively, from the ‘boot’ package. Thus, the corresponding print
methods are used. Arguments to the print.boot() and print.bootci() functions can be passed via the ... parameter.
Examples
# Bootstrap assessment of data (two groups) by aid of bootstrap_f2() function# by using 'rand_mode = "complete"' (the default, randomisation of complete# profiles)bs1 <- bootstrap_f2(data = dip2[dip2$batch %in% c("b0","b4"),], tcol =5:8, grouping ="batch", rand_mode ="complete", rr =200, new_seed =421, use_ema ="no")# Summary of the assessmentsummary(bs1)# STRATIFIED BOOTSTRAP### Call:# boot(data = data, statistic = get_f2, R = R, strata = data[, grouping],# grouping = grouping, tcol = tcol[ok])### Bootstrap Statistics :# original bias std. error# t1* 50.07187 -0.02553234 0.9488015### BOOTSTRAP CONFIDENCE INTERVAL CALCULATIONS# Based on 200 bootstrap replicates## CALL :# boot.ci(boot.out = t_boot, conf = confid, type = "all", L = jack$loo.values)## Intervals :# Level Normal Basic# 90% (48.54, 51.66 ) (48.46, 51.71 )## Level Percentile BCa# 90% (48.43, 51.68 ) (48.69, 51.99 )# Calculations and Intervals on Original Scale# Some BCa intervals may be unstable### Shah's lower 90% BCa confidence interval:# 48.64613# Use of 'rand_mode = "individual"' (randomisation per time point)bs2 <- bootstrap_f2(data = dip2[dip2$batch %in% c("b0","b4"),], tcol =5:8, grouping ="batch", rand_mode ="individual", rr =200, new_seed =421, use_ema ="no")# Summary of the assessmentsummary(bs2)# PARAMETRIC BOOTSTRAP### Call:# boot(data = data, statistic = get_f2, R = R, sim = "parametric",# ran.gen = rand_indiv_points, mle = mle, grouping = grouping,# tcol = tcol[ok], ins = seq_along(b1))### Bootstrap Statistics :# original bias std. error# t1* 50.07187 -0.1215656 0.9535517### BOOTSTRAP CONFIDENCE INTERVAL CALCULATIONS# Based on 200 bootstrap replicates## CALL :# boot.ci(boot.out = t_boot, conf = confid, type = "all", L = jack$loo.values)## Intervals :# Level Normal Basic# 90% (48.62, 51.76 ) (48.44, 51.64 )## Level Percentile BCa# 90% (48.50, 51.70 ) (48.88, 52.02 )# Calculations and Intervals on Original Scale# Some BCa intervals may be unstable### Shah's lower 90% BCa confidence interval:# 48.82488