distantia_ls function

Lock-Step Dissimilarity Analysis of Time Series Lists

Lock-Step Dissimilarity Analysis of Time Series Lists

Minimalistic but slightly faster version of distantia() to compute lock-step dissimilarity scores.

distantia_ls(tsl = NULL, distance = "euclidean")

Arguments

  • tsl: (required, time series list) list of zoo time series. Default: NULL
  • distance: (optional, character vector) name or abbreviation of the distance method. Valid values are in the columns "names" and "abbreviation" of the dataset distances . Default: "euclidean".

Returns

data frame:

  • x: time series name.
  • y: time series name.
  • distance: name of the distance metric.
  • psi: psi dissimilarity of the sequences x and y.

Examples

#load fagus_dynamics as tsl #global centering and scaling tsl <- tsl_initialize( x = fagus_dynamics, name_column = "name", time_column = "time" ) |> tsl_transform( f = f_scale_global ) if(interactive()){ tsl_plot( tsl = tsl, guide_columns = 3 ) } #lock-step dissimilarity analysis df_ls <- distantia_ls( tsl = tsl, distance = "euclidean" ) df_ls

See Also

Other distantia: distantia(), distantia_dtw(), distantia_dtw_plot()

  • Maintainer: Blas M. Benito
  • License: MIT + file LICENSE
  • Last published: 2025-02-01