Given an sf data frame with geometry types POLYGON, MULTIPOLYGON, or POINT representing time series locations, this function transforms the output of momentum(), momentum_ls(), momentum_dtw() to an sf data frame.
If network = TRUE, the sf data frame is of type LINESTRING, with edges connecting time series locations. This output is helpful to build many-to-many dissimilarity maps (see examples).
If network = FALSE, the sf data frame contains the geometry in the input sf argument. This output helps build one-to-many dissimilarity maps.
momentum_spatial(df =NULL, sf =NULL, network =TRUE)
Arguments
df: (required, data frame) Output of momentum(), momentum_ls(), or momentum_dtw(). Default: NULL
sf: (required, sf data frame) Points or polygons representing the location of the time series in argument 'df'. It must have a column with all time series names in df$x and df$y. Default: NULL
network: (optional, logical) If TRUE, the resulting sf data frame is of time LINESTRING and represent network edges. Default: TRUE
Returns
sf data frame (LINESTRING geometry)
Examples
tsl <- distantia::tsl_initialize( x = distantia::eemian_pollen, name_column ="name", time_column ="time")|>#reduce size to speed-up example runtimedistantia::tsl_subset( names =1:3)df_momentum <- distantia::momentum( tsl = tsl
)#network many to manysf_momentum <- distantia::momentum_spatial( df = df_momentum, sf = distantia::eemian_coordinates, network =TRUE)#network map# mapview::mapview(# sf_momentum,# layer.name = "Importance - Abies",# label = "edge_name",# zcol = "importance__Abies",# lwd = 3# ) |># suppressWarnings()
See Also
Other momentum_support: momentum_aggregate(), momentum_boxplot(), momentum_model_frame(), momentum_stats(), momentum_to_wide()