Internal function used in zoo_resample(). It finds the span parameter of a univariate Loess (Locally Estimated Scatterplot Smoothing.) model y ~ x fitted with stats::loess() that minimizes the root mean squared error (rmse) between observations and predictions, and returns a model fitted with such span.
utils_optimize_loess(x =NULL, y =NULL, max_complexity =FALSE)
Arguments
x: (required, numeric vector) predictor, a time vector coerced to numeric. Default: NULL
y: (required, numeric vector) response, a column of a zoo object. Default: NULL
max_complexity: (required, logical). If TRUE, RMSE optimization is ignored, and the model of maximum complexity is returned. Default: FALSE
Returns
Loess model.
Examples
#zoo time seriesxy <- zoo_simulate( cols =1, rows =30)#optimize loess modelm <- utils_optimize_loess( x = as.numeric(zoo::index(xy)),#predictor y = xy[,1]#response)print(m)#plot observationplot( x = zoo::index(xy), y = xy[,1], col ="forestgreen", type ="l", lwd =2)#plot predictionpoints( x = zoo::index(xy), y = stats::predict( object = m, newdata = as.numeric(zoo::index(xy))), col ="red4")
See Also
Other tsl_processing_internal: utils_drop_geometry(), utils_global_scaling_params(), utils_optimize_spline(), utils_rescale_vector()