utils_optimize_loess function

Optimize Loess Models for Time Series Resampling

Optimize Loess Models for Time Series Resampling

Internal function used in zoo_resample(). It finds the span parameter of a univariate Loess (Locally Estimated Scatterplot Smoothing.) model y ~ x fitted with stats::loess() that minimizes the root mean squared error (rmse) between observations and predictions, and returns a model fitted with such span.

utils_optimize_loess(x = NULL, y = NULL, max_complexity = FALSE)

Arguments

  • x: (required, numeric vector) predictor, a time vector coerced to numeric. Default: NULL
  • y: (required, numeric vector) response, a column of a zoo object. Default: NULL
  • max_complexity: (required, logical). If TRUE, RMSE optimization is ignored, and the model of maximum complexity is returned. Default: FALSE

Returns

Loess model.

Examples

#zoo time series xy <- zoo_simulate( cols = 1, rows = 30 ) #optimize loess model m <- utils_optimize_loess( x = as.numeric(zoo::index(xy)), #predictor y = xy[, 1] #response ) print(m) #plot observation plot( x = zoo::index(xy), y = xy[, 1], col = "forestgreen", type = "l", lwd = 2 ) #plot prediction points( x = zoo::index(xy), y = stats::predict( object = m, newdata = as.numeric(zoo::index(xy)) ), col = "red4" )

See Also

Other tsl_processing_internal: utils_drop_geometry(), utils_global_scaling_params(), utils_optimize_spline(), utils_rescale_vector()

  • Maintainer: Blas M. Benito
  • License: MIT + file LICENSE
  • Last published: 2025-02-01