utils_optimize_spline function

Optimize Spline Models for Time Series Resampling

Optimize Spline Models for Time Series Resampling

Internal function used in zoo_resample(). It finds optimal df parameter of a smoothing spline model y ~ x fitted with stats::smooth.spline() that minimizes the root mean squared error (rmse) between observations and predictions, and returns a model fitted with such df.

utils_optimize_spline(x = NULL, y = NULL, max_complexity = FALSE)

Arguments

  • x: (required, numeric vector) predictor, a time vector coerced to numeric. Default: NULL
  • y: (required, numeric vector) response, a column of a zoo object. Default: NULL
  • max_complexity: (required, logical). If TRUE, RMSE optimization is ignored, and the model of maximum complexity is returned. Default: FALSE

Returns

Object of class "smooth.spline".

Examples

#zoo time series xy <- zoo_simulate( cols = 1, rows = 30 ) #optimize splines model m <- utils_optimize_spline( x = as.numeric(zoo::index(xy)), #predictor y = xy[, 1] #response ) print(m) #plot observation plot( x = zoo::index(xy), y = xy[, 1], col = "forestgreen", type = "l", lwd = 2 ) #plot prediction points( x = zoo::index(xy), y = stats::predict( object = m, x = as.numeric(zoo::index(xy)) )$y, col = "red" )

See Also

Other tsl_processing_internal: utils_drop_geometry(), utils_global_scaling_params(), utils_optimize_loess(), utils_rescale_vector()

  • Maintainer: Blas M. Benito
  • License: MIT + file LICENSE
  • Last published: 2025-02-01