zoo_smooth_exponential function

Exponential Smoothing of Zoo Time Series

Exponential Smoothing of Zoo Time Series

Applies exponential smoothing to a zoo time series object, where each value is a weighted average of the current value and past smoothed values. This method is useful for reducing noise in time series data while preserving the general trend.

zoo_smooth_exponential(x = NULL, alpha = 0.2)

Arguments

  • x: (required, zoo object) time series to smooth Default: NULL
  • alpha: (required, numeric) Smoothing factor in the range (0, 1]. Determines the weight of the current value relative to past values. A higher value gives more weight to recent observations, while a lower value gives more weight to past observations. Default: 0.2

Returns

zoo object

Examples

x <- zoo_simulate() x_smooth <- zoo_smooth_exponential( x = x, alpha = 0.2 ) if(interactive()){ zoo_plot(x) zoo_plot(x_smooth) }

See Also

Other zoo_functions: zoo_aggregate(), zoo_name_clean(), zoo_name_get(), zoo_name_set(), zoo_permute(), zoo_plot(), zoo_resample(), zoo_smooth_window(), zoo_time(), zoo_to_tsl(), zoo_vector_to_matrix()

  • Maintainer: Blas M. Benito
  • License: MIT + file LICENSE
  • Last published: 2025-02-01