frechet function

The Fréchet distribution

The Fréchet distribution

Density, distribution function, quantile function, raw moments and random generation for the Fréchet distribution.

dfrechet(x, shape = 1.5, scale = 0.5, log = FALSE) pfrechet(q, shape = 1.5, scale = 0.5, log.p = FALSE, lower.tail = TRUE) qfrechet(p, shape = 1.5, scale = 0.5, log.p = FALSE, lower.tail = TRUE) mfrechet(r = 0, truncation = 0, shape = 1.5, scale = 0.5, lower.tail = TRUE) rfrechet(n, shape = 1.5, scale = 0.5)

Arguments

  • x, q: vector of quantiles
  • shape, scale: Shape and scale of the Fréchet distribution, defaults to 1.5 and 0.5 respectively.
  • log, log.p: logical; if TRUE, probabilities p are given as log(p).
  • lower.tail: logical; if TRUE (default), probabilities (moments) are P[Xx]P[X \le x] (E[xrXy])\left(E[x^r|X \le y]\right), otherwise, P[X>x]P[X > x] (E[xrX>y])\left(E[x^r|X > y]\right)
  • p: vector of probabilities
  • r: rth raw moment of the distribution
  • truncation: lower truncation parameter
  • n: number of observations

Returns

dfrechet returns the density, pfrechet the distribution function, qfrechet the quantile function, mfrechet the rth moment of the distribution and rfrechet generates random deviates.

The length of the result is determined by n for rfrechet, and is the maximum of the lengths of the numerical arguments for the other functions.

Details

Probability and Cumulative Distribution Function:

f(x)=shapescale(ωscale)1shapee(ωscale)shape,FX(x)=e(ωscale)shape f(x) =\frac{shape}{scale}\left(\frac{\omega}{scale}\right)^{-1-shape} e^{-\left(\frac{\omega}{scale}\right)^{-shape}}, \qquad F_X(x) = e^{-\left(\frac{\omega}{scale}\right)^{-shape}}

The y-bounded r-th raw moment of the Fréchet distribution equals:

μyr=scaleσs1[1Γ(1σs1shape,(yscale)shape)],shape>r \mu^{r}_{y} = scale^{\sigma_s - 1} \left[1-\Gamma\left(1-\frac{\sigma_s - 1}{shape}, \left(\frac{y}{scale}\right)^{-shape} \right)\right], \qquad shape>r

Examples

## Frechet density plot(x = seq(0, 5, length.out = 100), y = dfrechet(x = seq(0, 5, length.out = 100), shape = 1, scale = 1)) plot(x = seq(0, 5, length.out = 100), y = dfrechet(x = seq(0, 5, length.out = 100), shape = 2, scale = 1)) plot(x = seq(0, 5, length.out = 100), y = dfrechet(x = seq(0, 5, length.out = 100), shape = 3, scale = 1)) plot(x = seq(0, 5, length.out = 100), y = dfrechet(x = seq(0, 5, length.out = 100), shape = 3, scale = 2)) ## frechet is also called the inverse weibull distribution, which is available in the stats package pfrechet(q = 5, shape = 2, scale = 1.5) 1 - pweibull(q = 1 / 5, shape = 2, scale = 1 / 1.5) ## Demonstration of log functionality for probability and quantile function qfrechet(pfrechet(2, log.p = TRUE), log.p = TRUE) ## The zeroth truncated moment is equivalent to the probability function pfrechet(2) mfrechet(truncation = 2) ## The (truncated) first moment is equivalent to the mean of a (truncated) random sample, #for large enough samples. x <- rfrechet(1e5, scale = 1) mean(x) mfrechet(r = 1, lower.tail = FALSE, scale = 1) sum(x[x > quantile(x, 0.1)]) / length(x) mfrechet(r = 1, truncation = quantile(x, 0.1), lower.tail = FALSE, scale = 1)
  • Maintainer: Ruben Dewitte
  • License: GPL-3
  • Last published: 2020-05-25

Useful links