gamma function

The Gamma distribution

The Gamma distribution

Raw moments for the Gamma distribution.

mgamma( r = 0, truncation = 0, shape = 2, rate = 1, scale = 1/rate, lower.tail = TRUE )

Arguments

  • r: rth raw moment of the distribution, defaults to 1.
  • truncation: lower truncation parameter, defaults to 0.
  • shape, rate, scale: shape, rate and scale of the distribution with default values of 2 and 1 respectively.
  • lower.tail: logical; if TRUE (default), moments are E[xrXy]E[x^r|X \le y], otherwise, E[xrX>y]E[x^r|X > y]

Returns

Provides the truncated rth raw moment of the distribution.

The zeroth truncated moment is equivalent to the probability function pgamma(2,shape=2,rate=1) mgamma(truncation=2)

The (truncated) first moment is equivalent to the mean of a (truncated) random sample, #for large enough samples. x = rgamma(1e5,shape=2,rate=1) mean(x) mgamma(r=1,lower.tail=FALSE)

sum(x[x>quantile(x,0.1)])/length(x) mgamma(r=1,truncation=quantile(x,0.1),lower.tail=FALSE)

Details

Probability and Cumulative Distribution Function:

f(x)=1skΓ(k)ωk1eωs,FX(x)=1Γ(k)γ(k,ωs) f(x) = \frac{1}{s^k\Gamma(k)}\omega^{k-1}e^{-\frac{\omega}{s}},\qquad F_X(x) = \frac{1}{\Gamma(k)}\gamma(k,\frac{\omega}{s})

,

where Γ(x)\Gamma(x) stands for the upper incomplete gamma function function, while γ(s,x)\gamma(s,x) stands for the lower incomplete Gamma function with upper bound xx.

The y-bounded r-th raw moment of the distribution equals:

μyr=srΓ(k)Γ(r+k,ys) \mu^r_y = \frac{s^{r}}{\Gamma(k)} \Gamma\left(r + k , \frac{y}{s} \right)
  • Maintainer: Ruben Dewitte
  • License: GPL-3
  • Last published: 2020-05-25

Useful links