The Left-Pareto Lognormal distribution
Density, distribution function, quantile function and random generation for the Left-Pareto Lognormal distribution.
dleftparetolognormal(x, shape1 = 1.5, meanlog = -0.5, sdlog = 0.5, log = FALSE)
pleftparetolognormal(
q,
shape1 = 1.5,
meanlog = -0.5,
sdlog = 0.5,
lower.tail = TRUE,
log.p = FALSE
)
qleftparetolognormal(
p,
shape1 = 1.5,
meanlog = -0.5,
sdlog = 0.5,
lower.tail = TRUE,
log.p = FALSE
)
mleftparetolognormal(
r = 0,
truncation = 0,
shape1 = 1.5,
meanlog = -0.5,
sdlog = 0.5,
lower.tail = TRUE
)
rleftparetolognormal(n, shape1 = 1.5, meanlog = -0.5, sdlog = 0.5)
Arguments
x, q
: vector of quantiles
shape1, meanlog, sdlog
: Shape, mean and variance of the Left-Pareto Lognormal distribution respectively.
log, log.p
: logical; if TRUE, probabilities p are given as log(p).
lower.tail
: logical; if TRUE (default), probabilities (moments) are P[X≤x] (E[xr∣X≤y]), otherwise, P[X>x] (E[xr∣X>y])
p
: vector of probabilities
r
: rth raw moment of the Pareto distribution
truncation
: lower truncation parameter, defaults to xmin
n
: number of observations
Returns
dleftparetolognormal gives the density, pleftparetolognormal gives the distribution function, qleftparetolognormal gives the quantile function, mleftparetolognormal gives the rth moment of the distribution and rleftparetolognormal generates random deviates.
The length of the result is determined by n for rleftparetolognormal, and is the maximum of the lengths of the numerical arguments for the other functions.
Details
Probability and Cumulative Distribution Function as provided by if(!exists(".Rdpack.currefs")) .Rdpack.currefs <-new.env();Rdpack::insert_citeOnly(keys="reed2004double",package="distributionsrd",cached_env=.Rdpack.currefs) :
f(x)=shape1ωshape1−1e−shape1meanlog+2shape12sdlog2Φc(sdloglnω−meanlog+shape1sdlog2),FX(x)=Φ(sdloglnω−meanlog)−ωshape1e−shape1meanlog+2shape12sdlog2Φc(sdloglnω−meanlog+shape1sdlog2)
The y-bounded r-th raw moment of the Let-Pareto Lognormal distribution equals:
meanlogyr=−shape1e−shape1meanlog+2shape12sdlog2σs+shape1−1yσs+shape1−1Φc(sdloglny−meanlog+shape1sdlog2)+r+shape1shape1e2r2sdlog2+2meanlogrΦc(sdloglny−rsdlog2+meanlog)
References
if(!exists(".Rdpack.currefs")) .Rdpack.currefs <-new.env();Rdpack::insert_all_ref(.Rdpack.currefs)
Left-Pareto Lognormal density plot(x=seq(0,5,length.out=100),y=dleftparetolognormal(x=seq(0,5,length.out=100))) plot(x=seq(0,5,length.out=100),y=dleftparetolognormal(x=seq(0,5,length.out=100),shape1=1))
Left-Pareto Lognormal relates to the Lognormal if the shape parameter goes to infinity pleftparetolognormal(q=6,shape1=1e20,meanlog=-0.5,sdlog=0.5) plnorm(q=6,meanlog=-0.5,sdlog=0.5)
Demonstration of log functionality for probability and quantile function qleftparetolognormal(pleftparetolognormal(2,log.p=TRUE),log.p=TRUE)
The zeroth truncated moment is equivalent to the probability function pleftparetolognormal(2) mleftparetolognormal(truncation=2)
The (truncated) first moment is equivalent to the mean of a (truncated) random sample, #for large enough samples. x = rleftparetolognormal(1e5)
mean(x) mleftparetolognormal(r=1,lower.tail=FALSE)
sum(x[x>quantile(x,0.1)])/length(x) mleftparetolognormal(r=1,truncation=quantile(x,0.1),lower.tail=FALSE)