shape2, meanlog, sdlog: Shape, mean and variance of the Right-Pareto Lognormal distribution respectively.
log, log.p: logical; if TRUE, probabilities p are given as log(p).
lower.tail: logical; if TRUE (default), probabilities (moments) are P[X≤x](E[xr∣X≤y]), otherwise, P[X>x](E[xr∣X>y])
p: vector of probabilities
r: rth raw moment of the Pareto distribution
truncation: lower truncation parameter, defaults to xmin
n: number of observations
Returns
drightparetolognormal gives the density, prightparetolognormal gives the distribution function, qrightparetolognormal gives the quantile function, mrightparetolognormal gives the rth moment of the distribution and rrightparetolognormal generates random deviates.
The length of the result is determined by n for rrightparetolognormal, and is the maximum of the lengths of the numerical arguments for the other functions.
Details
Probability and Cumulative Distribution Function as provided by if(!exists(".Rdpack.currefs")) .Rdpack.currefs <-new.env();Rdpack::insert_citeOnly(keys="reed2004double",package="distributionsrd",cached_env=.Rdpack.currefs) :
## Right-Pareto Lognormal densityplot(x = seq(0,5, length.out =100), y = drightparetolognormal(x = seq(0,5, length.out =100)))plot(x = seq(0,5, length.out =100), y = drightparetolognormal(x = seq(0,5, length.out =100),shape2 =1))## Right-Pareto Lognormal relates to the Lognormal if the shape parameter goes to infinityprightparetolognormal(q =6, shape2 =1e20, meanlog =-0.5, sdlog =0.5)plnorm(q =6, meanlog =-0.5, sdlog =0.5)## Demonstration of log functionality for probability and quantile functionqrightparetolognormal(prightparetolognormal(2, log.p =TRUE), log.p =TRUE)## The zeroth truncated moment is equivalent to the probability functionprightparetolognormal(2)mrightparetolognormal(truncation =2)## The (truncated) first moment is equivalent to the mean of a (truncated) random sample,#for large enough samples.x <- rrightparetolognormal(1e5, shape2 =3)mean(x)mrightparetolognormal(r =1, shape2 =3, lower.tail =FALSE)sum(x[x > quantile(x,0.1)])/ length(x)mrightparetolognormal(r =1, shape2 =3, truncation = quantile(x,0.1), lower.tail =FALSE)