Moments of the split-t distribution
Computing the mean, variance, skewness and kurtosis for the split student-t distribution.
splitt_kurtosis(df, phi, lmd) splitt_mean(mu, df, phi, lmd) splitt_skewness(df, phi, lmd) splitt_var(df, phi, lmd)
df
: degrees of freedom (> 0, can be non-integer). df = Inf is allowed.phi
: vector of scale parameters (> 0).lmd
: vector of skewness parameters (> 0). If is 1, reduced to symmetric student t distribution.mu
: vector of location parameter. (The mode of the density)splitt_mean
gives the mean. splitt_var
gives the variance. splitt_skewness
gives the skewness. splitt_kurtosis
gives the kurtosis. (splitt_mean
, splitt_var
,splitt_skeness
and splitt_kurtosis
are all vectors.)
Invalid arguments will result in return value NaN, with a warning.
splitt_kurtosis
: Kurtosis for the split-t distribution.splitt_skewness
: Skewness for the split-t distribution.splitt_var
: Variance for the split-t distribution.mu <- c(0,1,2) df <- rep(10,3) phi <- c(0.5,1,2) lmd <- c(1,2,3) mean0 <- splitt_mean(mu, df, phi, lmd) var0 <- splitt_var(df, phi, lmd) skewness0 <- splitt_skewness(df, phi, lmd) kurtosis0 <- splitt_kurtosis(df, phi, lmd)
Li, F., Villani, M., & Kohn, R. (2010). Flexible modeling of conditional distributions using smooth mixtures of asymmetric student t densities. Journal of Statistical Planning & Inference, 140(12), 3638-3654.
dsplitt()
, psplitt()
, qsplitt()
and rsplitt()
for the split-t distribution.
Feng Li, Jiayue Zeng