engineEdge function

Implementation of simulation engine for dynamic networks using smoothing estimates of change statistics.

Implementation of simulation engine for dynamic networks using smoothing estimates of change statistics.

engineEdge( start_network, inputcoeff, ns, model.terms, model.formula, graph_mode, group, intercept, exvar, maxlag, lagmat, ylag, lambda = NA, method = "bayesglm", alpha.glmnet, paramout = TRUE )

Arguments

  • start_network: Initial list of networks
  • inputcoeff: coefficient vector
  • ns: number of time points for simulation
  • model.terms: model terms in formula
  • model.formula: model formula (ergm)
  • graph_mode: 'digraph' by default
  • group: group terms
  • intercept: intercept terms
  • exvar: extraneous covariates
  • maxlag: maximum lag
  • lagmat: lag matrix
  • ylag: lag vector for network lag terms
  • lambda: NA
  • method: 'bayesglm' by default
  • alpha.glmnet: NA
  • paramout: T/F parameter estimation is returned.

Returns

list: out_network: list of predicted networks coefmat: if paramout is TRUE, matrix of coefficients at all time.

Examples

## Not run: input_network=rdNets[1:6]; model.terms=c("triadcensus.003", "triadcensus.012", "triadcensus.102", "triadcensus.021D", "gwesp"); model.formula = net~triadcensus(0:3)+gwesp(decay = 0, fixed=FALSE, cutoff=30)-1; graph_mode='digraph'; group='dnc'; alpha.glmnet=1 directed=TRUE; method <- 'bayesglm' maxlag <- 3 lambda=NA intercept = c("edges") cdim <- length(model.terms) lagmat <- matrix(sample(c(0,1),(maxlag+1)*cdim,replace = TRUE),ncol = cdim) ylag <- rep(1,maxlag) lagmat[1,] <- rep(0,ncol(lagmat)) out <- paramEdge(input_network,model.terms, model.formula, graph_mode="digraph",group,intercept = c("edges"),exvar=NA, maxlag = 3, lagmat = lagmat, ylag = rep(1,maxlag), lambda = NA, method='bayesglm', alpha.glmnet=1) # start_network <- input_network inputcoeff <- out$coef$coef nvertex <- 47 ns <- 10 exvar <- NA tmp <- suppressWarnings(engineEdge(start_network=start_network,inputcoeff=inputcoeff,ns=ns, model.terms=model.terms, model.formula=model.formula, graph_mode=graph_mode,group=group,intercept=intercept, exvar=exvar, maxlag=maxlag, lagmat=lagmat, ylag=ylag, lambda = NA, method='bayesglm', alpha.glmnet=alpha.glmnet)) ## End(Not run)

Author(s)

Abhirup

  • Maintainer: Abhirup Mallik
  • License: GPL-3
  • Last published: 2020-11-30

Useful links