engineEdgeBayes function

Implementation of simulation engine for dynamic networks using smoothing estimates of change statistics.

Implementation of simulation engine for dynamic networks using smoothing estimates of change statistics.

engineEdgeBayes( start_network, inputcoeff, ns, model.terms, model.formula, graph_mode, group, intercept, exvar, maxlag, lagmat, ylag, lambda = NA, method = "bayesglm", alpha.glmnet, paramout = TRUE, Theta = NA )

Arguments

  • start_network: Initial list of networks
  • inputcoeff: coefficient vector
  • ns: number of time points for simulation
  • model.terms: model terms in formula
  • model.formula: model formula (ergm)
  • graph_mode: 'digraph' by default
  • group: group terms
  • intercept: intercept terms
  • exvar: extraneous covariates
  • maxlag: maximum lag
  • lagmat: lag matrix
  • ylag: lag vector for network lag terms
  • lambda: NA
  • method: 'bayesglm' by default
  • alpha.glmnet: NA
  • paramout: T/F parameter estimation is returned.
  • Theta: = prior probability matrix.

Examples

## Not run: startNet <- rdNets[1:50] model.terms=c("triadcensus.003", "triadcensus.012", "triadcensus.102", "triadcensus.021D", "gwesp") model.formula = net~triadcensus(0:3)+gwesp(alpha=0, fixed=FALSE, cutoff=30)-1 graph_mode <- 'digraph' group <- 'dnc' alpha.glmnet <- 1 method <- 'bayesglm' maxlag <- 3 lambda <- NA intercept <- "edges" cdim <- length(model.terms) lagmat <- matrix(sample(c(0,1),(maxlag+1)*cdim,replace = TRUE),ncol = cdim) ylag <- rep(1,maxlag) lagmat[1,] <- rep(0,ncol(lagmat)) out.coef <- paramEdge(input_network = startNet, model.terms = model.terms, model.formula = model.formula, graph_mode='digraph', group=group,intercept = intercept, exvar=NA, maxlag = maxlag, lagmat = lagmat, ylag = ylag, lambda = NA, method='bayesglm', alpha.glmnet=1) inputcoeff <- out.coef$coef$coef.edge nvertex <- 47 ##find vertex here ns <- 1 exvar <- NA for(i in seq_along(startNet)) Theta <- Theta + startNet[[i]][,] Theta <- Theta/length(startNet) Theta <- thresh(Theta) out.bayes <- engineEdgeBayes(start_network=startNet, inputcoeff=inputcoeff, ns=ns, model.terms=model.terms, model.formula=model.formula, graph_mode=graph_mode, group=group,intercept=intercept, exvar=exvar, maxlag=maxlag, lagmat=lagmat, ylag=ylag, lambda = NA, method='bayesglm', alpha.glmnet=alpha.glmnet, Theta = Theta) ## End(Not run)
  • Maintainer: Abhirup Mallik
  • License: GPL-3
  • Last published: 2020-11-30

Useful links