Implementation of simulation engine for dynamic networks using smoothing estimates of change statistics.
engineEdgeBayes( start_network, inputcoeff, ns, model.terms, model.formula, graph_mode, group, intercept, exvar, maxlag, lagmat, ylag, lambda = NA, method = "bayesglm", alpha.glmnet, paramout = TRUE, Theta = NA )
start_network
: Initial list of networksinputcoeff
: coefficient vectorns
: number of time points for simulationmodel.terms
: model terms in formulamodel.formula
: model formula (ergm)graph_mode
: 'digraph' by defaultgroup
: group termsintercept
: intercept termsexvar
: extraneous covariatesmaxlag
: maximum laglagmat
: lag matrixylag
: lag vector for network lag termslambda
: NAmethod
: 'bayesglm' by defaultalpha.glmnet
: NAparamout
: T/F parameter estimation is returned.Theta
: = prior probability matrix.## Not run: startNet <- rdNets[1:50] model.terms=c("triadcensus.003", "triadcensus.012", "triadcensus.102", "triadcensus.021D", "gwesp") model.formula = net~triadcensus(0:3)+gwesp(alpha=0, fixed=FALSE, cutoff=30)-1 graph_mode <- 'digraph' group <- 'dnc' alpha.glmnet <- 1 method <- 'bayesglm' maxlag <- 3 lambda <- NA intercept <- "edges" cdim <- length(model.terms) lagmat <- matrix(sample(c(0,1),(maxlag+1)*cdim,replace = TRUE),ncol = cdim) ylag <- rep(1,maxlag) lagmat[1,] <- rep(0,ncol(lagmat)) out.coef <- paramEdge(input_network = startNet, model.terms = model.terms, model.formula = model.formula, graph_mode='digraph', group=group,intercept = intercept, exvar=NA, maxlag = maxlag, lagmat = lagmat, ylag = ylag, lambda = NA, method='bayesglm', alpha.glmnet=1) inputcoeff <- out.coef$coef$coef.edge nvertex <- 47 ##find vertex here ns <- 1 exvar <- NA for(i in seq_along(startNet)) Theta <- Theta + startNet[[i]][,] Theta <- Theta/length(startNet) Theta <- thresh(Theta) out.bayes <- engineEdgeBayes(start_network=startNet, inputcoeff=inputcoeff, ns=ns, model.terms=model.terms, model.formula=model.formula, graph_mode=graph_mode, group=group,intercept=intercept, exvar=exvar, maxlag=maxlag, lagmat=lagmat, ylag=ylag, lambda = NA, method='bayesglm', alpha.glmnet=alpha.glmnet, Theta = Theta) ## End(Not run)
Useful links