engineEdgeNS function

Implementation of simulation engine for dynamic networks without using smoothing estimates of change statistics.

Implementation of simulation engine for dynamic networks without using smoothing estimates of change statistics.

engineEdgeNS( start_network, inputcoeff, ns, model.terms, model.formula, graph_mode, group, intercept, exvar, maxlag, lagmat, ylag, lambda = NA, method = "bayesglm", alpha.glmnet, paramout = TRUE )

Arguments

  • start_network: Initial list of networks
  • inputcoeff: coefficient vector
  • ns: number of time points for simulation
  • model.terms: model terms in formula
  • model.formula: model formula (ergm)
  • graph_mode: 'digraph' by default
  • group: group terms
  • intercept: intercept terms
  • exvar: extraneous covariates
  • maxlag: maximum lag
  • lagmat: lag matrix
  • ylag: lag vector for network lag terms
  • lambda: NA
  • method: 'bayesglm' by default
  • alpha.glmnet: NA
  • paramout: T/F parameter estimation is returned.

Returns

list: out_network: list of predicted networks coefmat: if paramout is TRUE, matrix of coefficients at all time.

Examples

## Not run: input_network=rdNets[1:6]; model.terms=c("triadcensus.003", "triadcensus.012", "triadcensus.102", "triadcensus.021D", "gwesp"); model.formula = net~triadcensus(0:3)+gwesp(decay=0, fixed=FALSE, cutoff=30)-1; graph_mode='digraph'; group='dnc'; alpha.glmnet=1 directed=TRUE; method <- 'bayesglm' maxlag <- 3 lambda=NA intercept = c("edges") cdim <- length(model.terms) lagmat <- matrix(sample(c(0,1),(maxlag+1)*cdim,replace = TRUE),ncol = cdim) ylag <- rep(1,maxlag) lagmat[1,] <- rep(0,ncol(lagmat)) out <- paramEdge(input_network,model.terms, model.formula, graph_mode="digraph",group,intercept = c("edges"),exvar=NA, maxlag = 3, lagmat = lagmat, ylag = rep(1,maxlag), lambda = NA, method='bayesglm', alpha.glmnet=1) # start_network <- input_network inputcoeff <- out$coef$coef nvertex <- 47 ns <- 10 exvar <- NA tmp <- suppressWarnings(engineEdgeNS(start_network=start_network, inputcoeff=inputcoeff,ns=ns, model.terms=model.terms, model.formula=model.formula, graph_mode=graph_mode,group=group,intercept=intercept, exvar=exvar, maxlag=maxlag, lagmat=lagmat, ylag=ylag, lambda = NA, method='bayesglm', alpha.glmnet=alpha.glmnet)) ## End(Not run)

Author(s)

Abhirup

  • Maintainer: Abhirup Mallik
  • License: GPL-3
  • Last published: 2020-11-30

Useful links