Parameter estimation for static vertex case.
Parameter estimation for the static vertex case.
paramEdge( input_network, model.terms, model.formula, graph_mode = "digraph", group, intercept = c("edges"), exvar = NA, maxlag = 3, lagmat = matrix(sample(c(0, 1), (maxlag + 1) * length(model.terms), replace = T), ncol = length(model.terms)), ylag = rep(1, maxlag), lambda = NA, method = "glmnet", alpha.glmnet = 1, paramout = TRUE )
input_network
: Input network.model.terms
: model terms, must be ERGM terms expanded.model.formula
: ERGM formula for each time point.graph_mode
: 'digraph' by default for bidirectional.group
: grouping covariates for vertices.intercept
: intercept terms.exvar
: Extraneous variablesmaxlag
: maximum lag.lagmat
: Matrix of dimension (maxlag+1)x(length(model.terms))ylag
: lag vectors of length=maxlag.lambda
: NAmethod
: Regression method, default is 'bayesglm'alpha.glmnet
: if regularization is used. not needed for bayesglm.paramout
: TRUE by default. if parameters are needed.list with elements: coef: coefficients mplematfull: full matrix of change statistics mplemat: subset of matrix of change statistics
## Not run: input_network=rdNets[1:6] model.terms=c("triadcensus.003", "triadcensus.012", "triadcensus.102", "triadcensus.021D", "gwesp"); model.formula = net~triadcensus(0:3)+gwesp(decay=0, fixed=FALSE, cutoff=30)-1; graph_mode='digraph'; group='dnc'; alpha.glmnet=1 directed=TRUE; method <- 'bayesglm' maxlag <- 3 lambda=NA intercept = c("edges") cdim <- length(model.terms) lagmat <- matrix(sample(c(0,1),(maxlag+1)*cdim,replace = TRUE),ncol = cdim) ylag <- rep(1,maxlag) exvar <- NA out <- paramEdge(input_network,model.terms, model.formula, graph_mode='digraph',group,intercept = c("edges"),exvar=NA, maxlag = 3, lagmat = matrix(sample(c(0,1),(maxlag+1)*cdim, replace = TRUE),ncol = cdim), ylag = rep(1,maxlag), lambda = NA, method='bayesglm', alpha.glmnet=1) ## End(Not run)
Abhirup
Useful links