estimategrn function

estimategrn

estimategrn

Estimates the reduced dimension regressions necessary for the additional fluctuations.

estimategrn(Y, A, W, DeltaA, DeltaY, Qn, gn, SL_gr, tolg, glm_gr, a_0, reduction, returnModels, validRows)

Arguments

  • Y: A vector of continuous or binary outcomes.
  • A: A vector of binary treatment assignment (assumed to be equal to 0 or 1).
  • W: A data.frame of named covariates.
  • DeltaA: Indicator of missing treatment (assumed to be equal to 0 if missing 1 if observed).
  • DeltaY: Indicator of missing outcome (assumed to be equal to 0 if missing 1 if observed).
  • Qn: A list of outcome regression estimates evaluated on observed data.
  • gn: A list of propensity regression estimates evaluated on observed data.
  • SL_gr: A vector of characters or a list describing the Super Learner library to be used for the reduced-dimension propensity score.
  • tolg: A numeric indicating the minimum value for estimates of the propensity score.
  • glm_gr: A character describing a formula to be used in the call to glm for the second reduced-dimension regression. Ignored if SL_gr!=NULL.
  • a_0: A list of fixed treatment values .
  • reduction: A character equal to 'univariate' for a univariate misspecification correction or 'bivariate' for the bivariate version.
  • returnModels: A boolean indicating whether to return model fits for the outcome regression, propensity score, and reduced-dimension regressions.
  • validRows: A list of length cvFolds containing the row indexes of observations to include in validation fold.
  • Maintainer: David Benkeser
  • License: MIT + file LICENSE
  • Last published: 2023-01-05