cphGM function

CoxPH model with parametric baseline and frailty terms

CoxPH model with parametric baseline and frailty terms

Function for estimating the parameters of coxPH model with frailty terms

cphGM( formula, fterm, Time, status, id, data, bhdist, method = "L-BFGS-B", maxit = 200 )

Arguments

  • formula: survival model formula like Surv(time,status)~x1+x2
  • fterm: frailty term like c('gamma','center'). Currently we have the option for gamma distribution.
  • Time: survival time column
  • status: survival status column
  • id: id column
  • data: dataset
  • bhdist: distribution of survival time at baseline. Available option 'weibull','exponential','gompertz',
  • method: options are 'LFGS','L-BFGS-G','CG' etc. for more details see optim
  • maxit: maximum number of iteration

Returns

Estimates obtained from coxph model with the frailty terms.

Details

The hazard model is as follows:

hi(t)=zih0(t)exp(xiβ)  ;i=1,2,3,...,n h_i(t)=z_ih_0(t)exp(\textbf{x}_i\beta)\;;i=1,2,3,...,n

where baseline survival distribution could be Weibull distribution and the hazard function is:

h0(t)=ρλtρ1 h_0(t)=\rho \lambda t^{\rho-1}

. Similarly we can have Expoenetial, log logistic distribution. The following are the formula for hazard and cummulative hazard function For exponential: h0(t)=λh_0(t)=\lambda and H0(t)=λtH_0(t)=\lambda t;λ>0\lambda>0

Gompertz: h0(t)=λexp(γt)h_0(t)=\lambda exp(\gamma t) and H0(t)=λγ(exp(γt)1)H_0(t)=\frac{\lambda}{\gamma}(exp(\gamma t)-1);λ,γ>0\lambda,\gamma>0

The frailty term ziz_i follows Gamma distribution with parameter θ\theta. The parameter estimates are obtained by maximising the log likelihood

i=1nli(β,θ,λ,ρ) \prod_{i=1}^{n}l_i(\beta,\theta,\lambda,\rho)

The method argument allows the user to select suitable optimisation method available in optim function.

Examples

## X1<-matrix(rnorm(1000*2),1000,2) simulated_data<-simfdata(n=1000,beta=c(0.5,0.5),fvar=0.5, X=X1) model1<-cphGM(formula=Surv(time,status)~X1+X2, fterm<-c('gamma','id'),Time="time",status="status", id="id",data=simulated_data,bhdist='weibull') model1 ##

References

Vishwakarma, G. K., Bhattacherjee, A., Rajbongshi, B. K., & Tripathy, A. (2024). Censored imputation of time to event outcome through survival proximity score method. Journal of Computational and Applied Mathematics, 116103;

Bhattacharjee, A., Vishwakarma, G. K., Tripathy, A., & Rajbongshi, B. K. (2024). Competing risk multistate censored data modeling by propensity score matching method. Scientific Reports, 14(1), 4368.

See Also

dscore ,simfdata

Author(s)

Atanu Bhattacharjee, Bhrigu Kumar Rajbongshi and Gajendra K. Vishwakarma

  • Maintainer: Atanu Bhattacharjee
  • License: GPL-3
  • Last published: 2024-12-13

Useful links