Estimates the (multilevel) b2 model parameters, which is the bidirectional counterpart of the multilevel p2 model as described in Zijlstra, Van Duijn and Snijders (2006) <doi: 10.1027/1614-2241.2.1.42>.
b2ML(nets, actor =NULL, density =NULL, adapt =NULL, burnin =NULL, center =NULL,separate=NULL, densVar =NULL, seed =NULL)
Arguments
nets: List with n dichotomous symmetric dependent networks.
actor: Optional matrix with a stacked actor covariate, corresponding to the n networks. Multiple actor covariates can be added as a formula object, see example below
density: Optional matrix with symmetric a stacked density covariate, with dimensions similar to the n dependent networks. Multiple density covariates can be added as a formula object, see example below
adapt: Optional number of adaptive sequenses (default is 100).
burnin: Optional specification of number of burn-in iterations (default is 5000).
center: Optional argument for centering predictors (default is TRUE).
separate: Optional argument for estimating separate coefficients for the n dependent networks (default is FALSE).
densVar: Optional argument for estimating densty variance at the network level (default is TRUE).
seed: Optonal specification of random seed (delfault is 1).
Returns
Returns a fitted model of class b2ML, to be opened with the function summary().
References
Zijlstra, B. J., Van Duijn, M. A., & Snijders, T. A. (2006). The Multilevel p2 Model A random effects model for the analysis of multiple social networks. Methodology: European Journal of Research Methods for the Behavioral and Social Sciences, 2(1), 42.
# create two very small networks with covariates for illustrative purposesY1 <- matrix(c(0,1,1,1,1,1,1,1,1,0,1,0,1,0,1,1,1,1,1,1,1,1,0,0,1,1,1,1,0,1,1,0,0,0,1,0,0,1,0,0,1,1,1,1,0,1,1,0,1,1,1,1,1,0,1,0,1,0,1,1,1,1,1,0,1,1,0,1,1,1,1,1,1,1,0,0,1,0,0,1,1,1,0,0,1,1,1,0,0,1,0,1,1,0,1,1,1,1,1,0), ncol=10)Y2 <- matrix(c(0,0,1,0,1,1,0,1,0,0,0,0,0,0,0,0,0,1,1,0,1,0,0,1,0,1,0,1,0,0,0,0,1,0,0,0,1,1,0,0,1,0,0,0,0,0,1,1,0,0,1,0,1,0,0,0,1,1,0,0,0,0,0,1,1,1,0,1,0,0,1,1,1,1,1,1,1,0,0,1,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0), ncol=10)Y <- list(Y1, Y2)Aa1 <- c(1,0,1,0,1,1,0,1,0,1)Aa2 <- c(1,0,0,1,0,0,1,1,0,1)Aa <- list(Aa1, Aa2)Aat <- do.call(plyr::rbind.fill.matrix, Aa)Ab1 <- c(0,0,0,0,0,0,0,0,0,0)Ab2 <- c(1,1,1,1,1,1,1,1,1,1)Ab <- list(Ab1, Ab2)Abt <- do.call(plyr::rbind.fill.matrix, Ab)Da1 <- abs(matrix(rep(Aa1,10), byrow =FALSE, ncol=10)- matrix(rep(Aa1,10), byrow =TRUE, ncol=10))Da2 <- abs(matrix(rep(Aa2,10), byrow =FALSE, ncol=10)- matrix(rep(Aa2,10), byrow =TRUE, ncol=10))Da <- list(Da1, Da2)Dat <- do.call(plyr::rbind.fill.matrix, Da)# estimate b2 model for two networksM1 <- b2ML(Y,actor=~ Aat + Abt, density =~ Dat, adapt =10, burnin =100, densVar =FALSE)summary(M1)# Notice: burn-in, and number of adaptive sequenses are # much smaller than recommended to keep computation time low.# recommended code: ## Not run:M1 <- b2ML(Y,actor=~ Aat + Abt, density =~ Dat, densVar =FALSE)summary(M1)## End(Not run)# estimate b2 model for a single networkM2 <- b2ML(list(Y[[1]]),actor=~ Aat[1:10,], density =~ Dat[1:10,], adapt =10, burnin =100,densVar =FALSE)summary(M2)# Notice: burn-in, and number of adaptive sequenses are # much smaller than recommended to keep computation time low.# recommended code: ## Not run:M2 <- b2ML(list(Y[[1]]),actor=~ Aat[1:10,], density =~ Dat[1:10,], densVar =FALSE)summary(M2)## End(Not run)