## S3 method for class 'dynrModel'coef(object,...)coef(object)<- value
## S3 replacement method for class 'dynrModel'coef(object)<- value
## S3 method for class 'dynrCook'coef(object,...)
Arguments
object: The dynrCook object for which the coefficients are desired
...: further named arguments, ignored for this method
value: values for setting
Returns
A numeric vector of the fitted parameters.
Examples
# Create a minimal cooked model called 'cook'require(dynr)meas <- prep.measurement( values.load=matrix(c(1,0),1,2), params.load=matrix(c('fixed','fixed'),1,2), state.names=c("Position","Velocity"), obs.names=c("y1"))ecov <- prep.noise( values.latent=diag(c(0,1),2), params.latent=diag(c('fixed','dnoise'),2), values.observed=diag(1.5,1), params.observed=diag('mnoise',1))initial <- prep.initial( values.inistate=c(0,1), params.inistate=c('inipos','fixed'), values.inicov=diag(1,2), params.inicov=diag('fixed',2))dynamics <- prep.matrixDynamics( values.dyn=matrix(c(0,-0.1,1,-0.2),2,2), params.dyn=matrix(c('fixed','spring','fixed','friction'),2,2), isContinuousTime=TRUE)data(Oscillator)data <- dynr.data(Oscillator, id="id", time="times", observed="y1")model <- dynr.model(dynamics=dynamics, measurement=meas, noise=ecov, initial=initial, data=data)## Not run:cook <- dynr.cook(model, verbose=FALSE, optimization_flag=FALSE, hessian_flag=FALSE)# Now grab the coef!coef(cook)## End(Not run)