## S3 method for class 'dynrCook'confint(object, parm, level =0.95, type = c("delta.method","endpoint.transformation"), transformation =NULL,...)
Arguments
object: a fitted model object
parm: which parameters are to be given confidence intervals
level: the confidence level
type: The type of confidence interval to compute. See details. Partial name matching is used.
transformation: For type='endpoint.transformation' the transformation function used.
...: further named arguments. Ignored.
Returns
A matrix with columns giving lower and upper confidence limits for each parameter. These will be labelled as (1-level)/2 and 1 - (1-level)/2 as a percentage (e.g. by default 2.5
Details
The parm argument can be a numeric vector or a vector of names. If it is missing then it defaults to using all the parameters.
These are Wald-type confidence intervals based on the standard errors of the (transformed) parameters. Wald-type confidence intervals are known to be inaccurate for variance parameters, particularly when the variance is near zero (See references for issues with Wald-type confidence intervals).
Examples
# Minimal modelrequire(dynr)meas <- prep.measurement( values.load=matrix(c(1,0),1,2), params.load=matrix(c('fixed','fixed'),1,2), state.names=c("Position","Velocity"), obs.names=c("y1"))ecov <- prep.noise( values.latent=diag(c(0,1),2), params.latent=diag(c('fixed','dnoise'),2), values.observed=diag(1.5,1), params.observed=diag('mnoise',1))initial <- prep.initial( values.inistate=c(0,1), params.inistate=c('inipos','fixed'), values.inicov=diag(1,2), params.inicov=diag('fixed',2))dynamics <- prep.matrixDynamics( values.dyn=matrix(c(0,-0.1,1,-0.2),2,2), params.dyn=matrix(c('fixed','spring','fixed','friction'),2,2), isContinuousTime=TRUE)data(Oscillator)data <- dynr.data(Oscillator, id="id", time="times", observed="y1")model <- dynr.model(dynamics=dynamics, measurement=meas, noise=ecov, initial=initial, data=data)## Not run:cook <- dynr.cook(model, verbose=FALSE, optimization_flag=FALSE, hessian_flag=FALSE)# Now get the confidence intervals# But note that they are nonsense because we set hessian_flag=FALSE !!!!confint(cook)## End(Not run)
References
Pritikin, J.N., Rappaport, L.M. & Neale, M.C. (In Press). Likelihood-Based Confidence Intervals for a Parameter With an Upper or Lower Bound. Structural Equation Modeling. DOI: 10.1080/10705511.2016.1275969
Neale, M. C. & Miller M. B. (1997). The use of likelihood based confidence intervals in genetic models. Behavior Genetics, 27(2), 113-120.
Pek, J. & Wu, H. (2015). Profile likelihood-based confidence intervals and regions for structural equation models. Psychometrica, 80(4), 1123-1145.
Wu, H. & Neale, M. C. (2012). Adjusted confidence intervals for a bounded parameter. Behavior genetics, 42(6), 886-898.