Extract the number of observations for a dynrModel object
Extract the number of observations for a dynrModel object
## S3 method for class 'dynrModel'nobs(object,...)
Arguments
object: An unfitted model object
...: Further named arguments. Ignored.
Returns
A single number. The total number of observations across all IDs.
Details
We return the total number of rows of data, adding up the number of time points for each person. For some purposes, you may want the mean number of observations per person or the number of people instead. These are not currently supported via nobs.
Examples
# Create a minimal uncooked model called 'model'# That is, without esimating parametersrequire(dynr)meas <- prep.measurement( values.load=matrix(c(1,0),1,2), params.load=matrix(c('fixed','fixed'),1,2), state.names=c("Position","Velocity"), obs.names=c("y1"))ecov <- prep.noise( values.latent=diag(c(0,1),2), params.latent=diag(c('fixed','dnoise'),2), values.observed=diag(1.5,1), params.observed=diag('mnoise',1))initial <- prep.initial( values.inistate=c(0,1), params.inistate=c('inipos','fixed'), values.inicov=diag(1,2), params.inicov=diag('fixed',2))dynamics <- prep.matrixDynamics( values.dyn=matrix(c(0,-0.1,1,-0.2),2,2), params.dyn=matrix(c('fixed','spring','fixed','friction'),2,2), isContinuousTime=TRUE)data(Oscillator)data <- dynr.data(Oscillator, id="id", time="times", observed="y1")model <- dynr.model(dynamics=dynamics, measurement=meas, noise=ecov, initial=initial, data=data)# Now get the total number of observations!nobs(model)