prep.loadings function

Recipe function to quickly create factor loadings

Recipe function to quickly create factor loadings

prep.loadings(map, params = NULL, idvar, exo.names = character(0), intercept = FALSE)

Arguments

  • map: list giving how the latent variables map onto the observed variables
  • params: parameter numbers
  • idvar: names of the variables used to identify the factors
  • exo.names: names of the exogenous covariates
  • intercept: logical. Whether to include freely esimated intercepts

Returns

Object of class 'dynrMeasurement'

Details

The default pattern for 'idvar' is to fix the first factor loading for each factor to one. The variable names listed in 'idvar' have their factor loadings fixed to one. However, if the names of the latent variables are used for 'idvar', then all the factor loadings will be freely estimated and you should fix the factor variances in the noise part of the model (e.g. prep.noise).

This function does not have the full set of features possible in the dynr package. In particular, it does not have any regime-swtiching. Covariates can be included with the exo.names argument, but all covariate effects are freely estimated and the starting values are all zero. Likewise, intercepts can be included with the intercept

logical argument, but all intercept terms are freely estimated with zero as the starting value. For complete functionality use prep.measurement.

Examples

#Single factor model with one latent variable fixing first loading prep.loadings(list(eta1=paste0('y', 1:4)), paste0("lambda_", 2:4)) #Single factor model with one latent variable fixing the fourth loading prep.loadings(list(eta1=paste0('y', 1:4)), paste0("lambda_", 1:3), idvar='y4') #Single factor model with one latent variable freeing all loadings prep.loadings(list(eta1=paste0('y', 1:4)), paste0("lambda_", 1:4), idvar='eta1') #Single factor model with one latent variable fixing first loading # and freely estimated intercept prep.loadings(list(eta1=paste0('y', 1:4)), paste0("lambda_", 2:4), intercept=TRUE) #Single factor model with one latent variable fixing first loading # and freely estimated covariate effects for u1 and u2 prep.loadings(list(eta1=paste0('y', 1:4)), paste0("lambda_", 2:4), exo.names=paste0('u', 1:2)) # Two factor model with simple structure prep.loadings(list(eta1=paste0('y', 1:4), eta2=paste0('y', 5:7)), paste0("lambda_", c(2:4, 6:7))) #Two factor model with repeated use of a free parameter prep.loadings(list(eta1=paste0('y', 1:4), eta2=paste0('y', 5:8)), paste0("lambda_", c(2:4, 6:7, 4))) #Two factor model with a cross loading prep.loadings(list(eta1=paste0('y', 1:4), eta2=c('y5', 'y2', 'y6')), paste0("lambda_", c("21", "31", "41", "22", "62")))
  • Maintainer: Michael D. Hunter
  • License: GPL-3
  • Last published: 2023-11-28