This function eliminates items stepwise according to one of the following criteria: itemfit, Wald test, Andersen's LR-test
UTF-8
## S3 method for class 'eRm'stepwiseIt(object, criterion = list("itemfit"), alpha =0.05, verbose =TRUE, maxstep =NA)
Arguments
object: Object of class eRm.
criterion: List with either "itemfit", "Waldtest" or "LRtest" as first element. Optionally, for the Waldtest and LRtest a second element containing the split criterion can be specified (see details).
alpha: Significance level.
verbose: If TRUE intermediate results are printed out.
maxstep: Maximum number of elimination steps. If NA the procedure stops when the itemset is Rasch homogeneous.
Details
If criterion = list("itemfit") the elimination stops when none of the p-values in itemfit is significant. Within each step the item with the largest chi-squared itemfit value is excluded.
If criterion = list("Waldtest") the elimination stops when none of the p-values resulting from the Wald test is significant. Within each step the item with the largest z-value in Wald test is excluded.
If criterion = list("LRtest") the elimination stops when Andersen's LR-test is not significant. Within each step the item with the largest z-value in Wald test is excluded.
Returns
The function returns an object of class step containing: - X: Reduced data matrix (bad items eliminated)
fit: Object of class eRm with the final item parameter elimination
it.elim: Vector contaning the names of the eliminated items
res.wald: Elimination results for Wald test criterion
res.itemfit: Elimination results for itemfit criterion
res.LR: Elimination results for LR-test criterion
nsteps: Number of elimination steps
See Also
LRtest.Rm, Waldtest.Rm, itemfit.ppar
Examples
## 2pl-data, 100 persons, 10 itemsset.seed(123)X <- sim.2pl(500,10,0.4)res <- RM(X)## elimination according to itemfitstepwiseIt(res, criterion = list("itemfit"))## Wald test based on mean splittingstepwiseIt(res, criterion = list("Waldtest","mean"))## Andersen LR-test based on random splitset.seed(123)groupvec <- sample(1:3,500, replace =TRUE)stepwiseIt(res, criterion = list("LRtest",groupvec))