eam1.1.0 package

Evidence Accumulation Models

abc_posterior_bootstrap

Bootstrap resample ABC posterior samples

abc_postpr

ABC model comparison wrapper

abc_resample

ABC with resampling

accumulate_evidence_ddm_2b

Simulate evidence accumulation in a two-bound drift-diffusion model

accumulate_evidence_ddm

Simulate evidence accumulation in a drift-diffusion model

accumulate_evidence_lca_gi

Simulate evidence accumulation in a leaky competing accumulator model ...

apply_summarise_by_spec

Internal function to apply a spec to data

build_abc_input

Build input for Approximate Bayesian Computation (ABC)

build_abi_input

Build input for Amortized Bayesian Inference (ABI)

build_abi_input.theta

Extract and format parameter matrix for ABI

build_abi_input.Z

Extract and format summary statistics for ABI

calculate_total_rows

Calculate total number of rows needed for flattened data

detect_backend_ddm_2b

Backend detector for 2-boundary DDM

detect_backend_ddm

Backend detector for standard DDM

detect_backend_lca_gi

Backend detector for LCA-GI

evaluate_with_dt

Evaluate a list of formulas sequentially with data

extract_abc_param_values

Extract parameter values from abc result

extract_resample_medians

Extract posterior medians from abc_resample output

fill_data_table

Fill pre-allocated data.table with simulation results

flatten_simulation_results

Convert simulation results to a tidy data.table

get_backend_detectors

Get all registered backend detectors

get_column_names

Extract column names from simulation results

get_config_env_names

Extract all left-hand side variable names from config formulas and pri...

init_simulation_output_dir

Initialize simulation output directory structure

load_simulation_output

Rebuild eam_simulation_output from an existing output directory

map_by_condition.parallel.heuristic

Heuristic to determine if parallel processing should be used

map_by_condition.process_chunk

Process a single chunk for map_by_condition

map_by_condition

Map a function by condition across simulation output chunks

new_simulation_config.chunk_size.heuristic

Heuristic to calculate optimal chunk size for simulation configuration

new_simulation_config

Create a new simulation configuration

new_simulation_output

Create a eam_simulation_output object

plot_accuracy_ddm_2b

Plot accuracy for DDM-2B model (internal)

plot_accuracy_ddm

Plot accuracy for DDM model (internal)

plot_accuracy_graph

Plot accuracy graph (internal)

plot_accuracy

Plot accuracy comparison between posterior and observed data

plot_cv_pair_correlation

Plot CV parameter pair correlations

plot_cv_recovery

Plot CV parameter recovery

plot_posterior_parameters

Plot parameter posterior distributions

plot_resample_forest

Plot resample forest plots

plot_resample_medians

Plot resample median distributions

plot_rt

Plot reaction time distributions

plus-.eam_summarise_by_spec

Add two summarise_by specs together

plus-.eam_summarise_by_tbl

Join two eam_summarise_by_tbl objects

preallocate_columns

Pre-allocate data.table columns with appropriate data types

print.eam_simulation_config

Print method for eam simulation configuration

resolve_symbol

Helper to resolved defined symbols in our formulas

route_model_to_backend

Route model alias to backend and enrich configuration

run_chunk

Run a chunk of simulation conditions and save results to disk

run_condition

Run a given condition with multiple trials

run_simulation_parallel

Run a full simulation across multiple conditions in parallel

run_simulation_serial

Run a full simulation across multiple conditions (serial version)

run_simulation

Run a simulation with specified configuration

run_trial_ddm_2b

Run a single trial of the 2-boundary DDM simulation

run_trial_ddm

Run a single trial of the DDM simulation

run_trial_lca_gi

Run a single trial of the LCA-GI simulation

summarise_by_impl

Internal function to perform the core summarise_by logic

summarise_by

Summarise data by groups with optional pivoting

summarise_posterior_parameters

Summarise posterior parameter distributions

summarise_resample_medians

Summarise resample medians

Simulation-based evidence accumulation models for analyzing responses and reaction times in single- and multi-response tasks. The package includes simulation engines for five representative models: the Diffusion Decision Model (DDM), Leaky Competing Accumulator (LCA), Linear Ballistic Accumulator (LBA), Racing Diffusion Model (RDM), and Levy Flight Model (LFM), and extends these frameworks to multi-response settings. The package supports user-defined functions for item-level parameterization and the incorporation of covariates, enabling flexible customization and the development of new model variants based on existing architectures. Inference is performed using simulation-based methods, including Approximate Bayesian Computation (ABC) and Amortized Bayesian Inference (ABI), which allow parameter estimation without requiring tractable likelihood functions. In addition to core inference tools, the package provides modules for parameter recovery, posterior predictive checks, and model comparison, facilitating the study of a wide range of cognitive processes in tasks involving perceptual decision making, memory retrieval, and value-based decision making. Key methods implemented in the package are described in Ratcliff (1978) <doi:10.1037/0033-295X.85.2.59>, Usher and McClelland (2001) <doi:10.1037/0033-295X.108.3.550>, Brown and Heathcote (2008) <doi:10.1016/j.cogpsych.2007.12.002>, Tillman, Van Zandt and Logan (2020) <doi:10.3758/s13423-020-01719-6>, Wieschen, Voss and Radev (2020) <doi:10.20982/tqmp.16.2.p120>, Csilléry, François and Blum (2012) <doi:10.1111/j.2041-210X.2011.00179.x>, Beaumont (2019) <doi:10.1146/annurev-statistics-030718-105212>, and Sainsbury-Dale, Zammit-Mangion and Huser (2024) <doi:10.1080/00031305.2023.2249522>.

  • Maintainer: Guang Yang
  • License: MIT + file LICENSE
  • Last published: 2026-02-09 05:20:02 UTC