ebnm1.1-42 package

Solve the Empirical Bayes Normal Means Problem

coef.ebnm

Extract posterior means from a fitted EBNM model

confint.ebnm

Obtain credible intervals using a fitted EBNM model

ebnm_add_sampler

Add sampler to an ebnm_object

ebnm_ash

Solve the EBNM problem using an ash family of distributions

ebnm_check_fn

Check a custom ebnm function

ebnm_deconvolver

Solve the EBNM problem using the "deconvolveR" family of distributions

ebnm_flat

Solve the EBNM problem using a flat prior

ebnm_generalized_binary

Solve the EBNM problem using generalized binary priors

ebnm_group

Solve the EBNM problem for grouped data

ebnm_horseshoe

Solve the EBNM problem using horseshoe priors

ebnm_normal_scale_mixture

Solve the EBNM problem using scale mixtures of normals

ebnm_normal

Solve the EBNM problem using normal priors

ebnm_npmle

Solve the EBNM problem using the family of all distributions

ebnm_point_exponential

Solve the EBNM problem using point-exponential priors

ebnm_point_laplace

Solve the EBNM problem using point-Laplace priors

ebnm_point_mass

Solve the EBNM problem using a point mass prior

ebnm_point_normal

Solve the EBNM problem using point-normal priors

ebnm_scale_normalmix

Set scale parameter for scale mixtures of normals

ebnm_scale_npmle

Set scale parameter for NPMLE and deconvolveR prior family

ebnm_scale_unimix

Set scale parameter for nonparametric unimodal prior families

ebnm_unimodal_nonnegative

Solve the EBNM problem using unimodal nonnegative distributions

ebnm_unimodal_nonpositive

Solve the EBNM problem using unimodal nonpositive distributions

ebnm_unimodal_symmetric

Solve the EBNM problem using symmetric unimodal distributions

ebnm_unimodal

Solve the EBNM problem using unimodal distributions

ebnm

Solve the EBNM problem

fitted.ebnm

Extract posterior estimates from a fitted EBNM model

gammamix

Constructor for gammamix class

horseshoe

Constructor for horseshoe class

laplacemix

Constructor for laplacemix class

logLik.ebnm

Extract the log likelihood from a fitted EBNM model

nobs.ebnm

Get the number of observations used to fit an EBNM model

plot.ebnm

Plot an ebnm object

predict.ebnm

Use the estimated prior from a fitted EBNM model to solve the EBNM pro...

print.ebnm

Print an ebnm object

print.summary.ebnm

Print a summary.ebnm object

quantile.ebnm

Obtain posterior quantiles using a fitted EBNM model

residuals.ebnm

Calculate residuals for a fitted EBNM model

simulate.ebnm

Sample from the posterior of a fitted EBNM model

summary.ebnm

Summarize an ebnm object

vcov.ebnm

Extract posterior variances from a fitted EBNM model

Provides simple, fast, and stable functions to fit the normal means model using empirical Bayes. For available models and details, see function ebnm(). Our JSS article, Willwerscheid, Carbonetto, and Stephens (2025) <doi:10.18637/jss.v114.i03>, provides a detailed introduction to the package.

  • Maintainer: Peter Carbonetto
  • License: GPL (>= 3)
  • Last published: 2025-10-10