mutGauss function

Gaussian mutator.

Gaussian mutator.

Default Gaussian mutation operator known from Evolutionary Algorithms. This mutator is applicable only for representation="float". Given an individual xRl\mathbf{x} \in R^l this mutator adds a Gaussian distributed random value to each component of x\mathbf{x}, i.~e., x~i=xi+σN(0,1)\tilde{\mathbf{x}}_i = \mathbf{x}_i + \sigma \mathcal{N}(0, 1).

mutGauss(ind, p = 1L, sdev = 0.05, lower, upper)

Arguments

  • ind: [numeric]

    Numeric vector / individual to mutate.

  • p: [numeric(1)]

    Probability of mutation for the gauss mutation operator.

  • sdev: [numeric(1)

    Standard deviance of the Gauss mutation, i. e., the mutation strength.

  • lower: [numeric]

    Vector of minimal values for each parameter of the decision space.

  • upper: [numeric]

    Vector of maximal values for each parameter of the decision space.

Returns

[numeric]

References

[1] Beyer, Hans-Georg & Schwefel, Hans-Paul (2002). Evolution strategies. Kluwer Academic Publishers.

[2] Mateo, P. M. & Alberto, I. (2011). A mutation operator based on a Pareto ranking for multi-objective evolutionary algorithms. Springer Science+Business Meda. 57.

See Also

Other mutators: mutBitflip(), mutInsertion(), mutInversion(), mutJump(), mutPolynomial(), mutScramble(), mutSwap(), mutUniform()

  • Maintainer: Jakob Bossek
  • License: GPL-3
  • Last published: 2023-03-08