Visualize three-objective Pareto-front approximations.
Given a data frame with the results of (multiple) runs of (multiple) different three-objective optimization algorithms on (multiple) problem instances the function generates 3D scatterplots of the obtained Pareto-front approximations.
plotScatter3d( df, obj.cols = c("f1", "f2", "f3"), max.in.row = 4L, package = "scatterplot3d", ... )
df
: [data.frame
]
Data.frame with columns at least obj.cols
, prob and algorithm .
obj.cols
: [character(>= 3)
]
Column names of the objective functions. Default is c("f1", "f2", "f3")
.
max.in.row
: [integer(1)
]
Maximum number of plots to be displayed side by side in a row. Default is 4.
package
: [character(1L)
]
Which package to use for 3d scatterplot generation? Possible choices are scatterplot3d , plot3D , plot3Drgl
or plotly . Default is scatterplot3d .
...
: [any]
Further arguments passed down to scatterplot function.
Nothing
Other EMOA performance assessment tools: approximateNadirPoint()
, approximateRefPoints()
, approximateRefSets()
, computeDominanceRanking()
, emoaIndEps()
, makeEMOAIndicator()
, niceCellFormater()
, normalize()
, plotDistribution()
, plotFront()
, plotScatter2d()
, toLatex()