plotScatter3d function

Visualize three-objective Pareto-front approximations.

Visualize three-objective Pareto-front approximations.

Given a data frame with the results of (multiple) runs of (multiple) different three-objective optimization algorithms on (multiple) problem instances the function generates 3D scatterplots of the obtained Pareto-front approximations.

plotScatter3d( df, obj.cols = c("f1", "f2", "f3"), max.in.row = 4L, package = "scatterplot3d", ... )

Arguments

  • df: [data.frame]

    Data.frame with columns at least obj.cols, prob and algorithm .

  • obj.cols: [character(>= 3)]

    Column names of the objective functions. Default is c("f1", "f2", "f3").

  • max.in.row: [integer(1)]

    Maximum number of plots to be displayed side by side in a row. Default is 4.

  • package: [character(1L)]

    Which package to use for 3d scatterplot generation? Possible choices are scatterplot3d , plot3D , plot3Drgl

    or plotly . Default is scatterplot3d .

  • ...: [any]

    Further arguments passed down to scatterplot function.

Returns

Nothing

See Also

Other EMOA performance assessment tools: approximateNadirPoint(), approximateRefPoints(), approximateRefSets(), computeDominanceRanking(), emoaIndEps(), makeEMOAIndicator(), niceCellFormater(), normalize(), plotDistribution(), plotFront(), plotScatter2d(), toLatex()

  • Maintainer: Jakob Bossek
  • License: GPL-3
  • Last published: 2023-03-08