interpret_ess function

Interpret Bayesian Diagnostic Indices

Interpret Bayesian Diagnostic Indices

Interpretation of Bayesian diagnostic indices, such as Effective Sample Size (ESS) and Rhat.

interpret_ess(ess, rules = "burkner2017") interpret_rhat(rhat, rules = "vehtari2019")

Arguments

  • ess: Value or vector of Effective Sample Size (ESS) values.
  • rules: A character string (see Rules) or a custom set of rules().
  • rhat: Value or vector of Rhat values.

Rules

ESS

  • Bürkner, P. C. (2017) ("burkner2017"; default)

    • ESS \< 1000 - Insufficient
    • ESS \>= 1000 - Sufficient

Rhat

  • Vehtari et al. (2019) ("vehtari2019"; default)

    • Rhat \< 1.01 - Converged
    • Rhat \>= 1.01 - Failed
  • Gelman & Rubin (1992) ("gelman1992")

    • Rhat \< 1.1 - Converged
    • Rhat \>= 1.1 - Failed

Examples

interpret_ess(1001) interpret_ess(c(852, 1200)) interpret_rhat(1.00) interpret_rhat(c(1.5, 0.9))

References

  • Bürkner, P. C. (2017). brms: An R package for Bayesian multilevel models using Stan. Journal of Statistical Software, 80(1), 1-28.
  • Gelman, A., & Rubin, D. B. (1992). Inference from iterative simulation using multiple sequences. Statistical science, 7(4), 457-472.
  • Vehtari, A., Gelman, A., Simpson, D., Carpenter, B., & Bürkner, P. C. (2019). Rank-normalization, folding, and localization: An improved Rhat for assessing convergence of MCMC. arXiv preprint arXiv:1903.08008.
  • Maintainer: Mattan S. Ben-Shachar
  • License: MIT + file LICENSE
  • Last published: 2024-12-10