Kumaraswamy Complementary Weibull Geometric Probability Distribution
Kumaraswamy Complementary Weibull Geometric Probability Distribution
Density, distribution function, quantile function and random generation for the Kumaraswamy Complementary Weibull Geometric (Kw-CWG) probability distribution.
dkwcwg(x, alpha, beta, gamma, a, b, log =FALSE)pkwcwg(q, alpha, beta, gamma, a, b, lower.tail =TRUE, log.p =FALSE)qkwcwg(p, alpha, beta, gamma, a, b, lower.tail =TRUE, log.p =FALSE)rkwcwg(n, alpha, beta, gamma, a, b)
Arguments
x, q: vector of quantiles.
alpha, beta, gamma, a, b: Parameters of the distribution. 0 < alpha < 1, and the other parameters mustb e positive.
log, log.p: logical; if TRUE, probabilities p are given as log(p).
lower.tail: logical; if TRUE (default), probabilities are P[X≤x]
otherwise, P[X>x].
p: vector of probabilities.
n: number of observations. If length(n) > 1, the length is taken to be the number required.
Afify, A.Z., Cordeiro, G.M., Butt, N.S., Ortega, E.M. and Suzuki, A.K. (2017). A new lifetime model with variable shapes for the hazard rate. Brazilian Journal of Probability and Statistics