envoutliers1.1.0 package

Methods for Identification of Outliers in Environmental Data

boxcoxTransform

Box-Cox transformation of data - Only intended for developer use

changepoint.plot

Changepoint outlier detection plot - Only intended for developer use

changepoint

Changepoint analysis - Only intended for developer use

chebyshev.inequality.detect

Chebyshev inequality based identification of outliers on segments - On...

control.limits.R

Limits for control chart R - Only intended for developer use

control.limits.s

Limits for control chart s - Only intended for developer use

control.limits.x

Limits for control chart x - Only intended for developer use

controlchart.plot

Control chart outliers detection plot - Only intended for developer us...

EV.plot

Extreme value outlier detection plot - Only intended for developer use

extremal.index.censored

Extremal index estimation (Holesovsky and Fusek, 2020) - Only intended...

extremal.index.gomes

Extremal index estimation (Gomes, 1993) - Only intended for developer ...

extremal.index.intervals

Extremal index estimation (Ferro and Segers, 2003) - Only intended for...

extremal.index.Kgaps

Extremal index estimation (Suveges and Davison, 2010) - Only intended ...

extremal.index.runs

Extremal index estimation (Smith and Weissman, 1994) - Only intended f...

extremal.index.sliding.blocks

Extremal index estimation (Northrop, 2015) - Only intended for develop...

find.alpha

Parameter alpha for Quantiles of normal distribution based outlier...

find.L

Parameter L for Chebyshev inequality based outlier detection - Only in...

get.norm

Table of Control Charts Constants - Only intended for developer use

grubbs.detect

Grubbs test based identification of outliers on segments - Only intend...

grubbs.test

Outlier detection using Grubbs test - Only intended for developer use

KRDetect.outliers.changepoint

Identification of outliers using changepoint analysis

KRDetect.outliers.controlchart

Identification of outliers using control charts

KRDetect.outliers.EV

Identification of outliers using extreme value theory

KRDetect.outliers.plot

Outlier detection plot

mc.left

Left medcouple (LMC) - Only intended for developer use

mc.right

Right medcouple (RMC) - Only intended for developer use

mc.test

Robust medcouple MC-LR test - Only intended for developer use

Moment.gpd.fit

Moment estimates of GP distribution parameters - Only intended for dev...

MRL.plot

Mean residual life (MRL) plot

normal.distr.quantiles.detect

Normal distribution based identification of outliers on segments - Onl...

plot.KRDetect

Outlier detection plot

return.level.est

Return level estimation - Only intended for developer use

segment.length.control

Segment length control - Only intended for developer use

smoothing

Kernel regression smoothing

stability.plot

Stability plot

summary.KRDetect

Summary of the outlier detection results

Three semi-parametric methods for detection of outliers in environmental data based on kernel regression and subsequent analysis of smoothing residuals. The first method (Campulova, Michalek, Mikuska and Bokal (2018) <DOI: 10.1002/cem.2997>) analyzes the residuals using changepoint analysis, the second method is based on control charts (Campulova, Veselik and Michalek (2017) <DOI: 10.1016/j.apr.2017.01.004>) and the third method (Holesovsky, Campulova and Michalek (2018) <DOI: 10.1016/j.apr.2017.06.005>) analyzes the residuals using extreme value theory (Holesovsky, Campulova and Michalek (2018) <DOI: 10.1016/j.apr.2017.06.005>).

  • Maintainer: Martina Campulova
  • License: GPL-2
  • Last published: 2020-05-07