egf_prior function

Prior Distributions

Prior Distributions

Functions used by egf to specify prior distributions of bottom level mixed effects model parameters.

Normal(mu = 0, sigma = 1) LKJ(eta = 1) Wishart(df, scale, tol = 1e-06) InverseWishart(df, scale, tol = 1e-06)

Arguments

  • mu: a numeric vector listing means.
  • sigma: a positive numeric vector listing standard deviations.
  • eta: a positive numeric vector listing values for the shape parameter, with 1 corresponding to a uniform distribution over the space of real, symmetric, positive definite matrices with unit diagonal elements. Lesser (greater) values concentrate the probability density around such matrices whose determinant is nearer to 0 (1).
  • df: a numeric vector listing degrees of freedom. df must be greater than nrow(scale) - 1. If either df or scale has length greater than 1, then this condition is checked elementwise after recycling.
  • scale: a list of real, symmetric, positive definite matrices or a matrix to be placed in a list of length 1.
  • tol: a non-negative number specifying a tolerance for indefiniteness of scale. All eigenvalues of scale must exceed -tol * rho, where rho is the spectral radius of scale. However, regardless of tol, diag(scale) must be positive, as standard deviations are stored on a logarithmic scale.

Returns

A list inheriting from class egf_prior, with elements:

  • family: a character string specifying a family of distributions.

  • parameters: a named list of numeric vectors specifying parameter values.

Examples

Normal(mu = 0, sigma = 1) Normal(mu = -5:5, sigma = c(0.1, 1)) LKJ(eta = 2) u <- matrix(rnorm(9L), 3L, 3L) utu <- crossprod(u) uut <- tcrossprod(u) Wishart(df = 6, scale = utu) InverseWishart(df = 6, scale = list(utu, uut))