Estimates for a continuous variable with no grouping (single-group design)
Estimates for a continuous variable with no grouping (single-group design)
estimate_magnitude is suitable for a single group design with a continuous outcome variable. It estimates the population mean and population median (raw data only) with confidence intervals. You can pass raw data or summary data.
estimate_magnitude( data =NULL, outcome_variable =NULL, mean =NULL, sd =NULL, n =NULL, outcome_variable_name ="My outcome variable", conf_level =0.95, save_raw_data =TRUE)
Arguments
data: For raw data - A data frame or tibble
outcome_variable: For raw data - The column name of the outcome variable, or a vector of numeric data
mean: For summary data - A numeric representing the mean of the outcome variable
sd: For summary data - A numeric > 0, standard deviation of the outcome variable
n: For summary data - An integer > 0, sample size of the outcome variable
outcome_variable_name: Optional friendly name for the outcome variable. Defaults to 'My outcome variable' or the outcome variable column name if a data frame is passed.
conf_level: The confidence level for the confidence interval. Given in decimal form. Defaults to 0.95.
save_raw_data: For raw data; defaults to TRUE; set to FALSE to save memory by not returning raw data in estimate object
Returns
Returns an object of class esci_estimate
overview
outcome_variable_name -
mean -
mean_LL -
mean_UL -
median -
median_LL -
median_UL -
sd -
min -
max -
q1 -
q3 -
n -
missing -
df -
mean_SE -
median_SE -
es_mean
outcome_variable_name -
effect -
effect_size -
LL -
UL -
SE -
df -
ta_LL -
ta_UL -
es_median
outcome_variable_name -
effect -
effect_size -
LL -
UL -
SE -
df -
ta_LL -
ta_UL -
raw_data
grouping_variable -
outcome_variable -
Details
Reach for this function in place of a one-sample t-test or z-test.
Once you generate an estimate with this function, you can visualize it with plot_magnitude().
If you want to compare your sample to a known value or reference, then use estimate_mdiff_one().
The estimated mean is from statpsych::ci.mean1() (renamed ci.mean as of statpsych 1.6).
The estimated median is from statpsych::ci.median1() (renamed ci.median as of statpsych 1.6)
Examples
# From raw datadata("data_penlaptop1")estimate_from_raw <- esci::estimate_magnitude( data = data_penlaptop1[data_penlaptop1$condition =="Pen",], outcome_variable = transcription
)# To visualize the estimatemyplot_from_raw <- esci::plot_magnitude( estimate_from_raw, effect_size ="median")# From summary datamymean <-24.5mysd <-3.65myn <-40estimate_from_summary <- esci::estimate_magnitude( mean = mymean, sd = mysd, n = myn
)# To visualize the estimatemyplot_from_summary <- esci::plot_magnitude( estimate_from_summary, effect_size ="mean")