Estimates for a 2x2 between-subjects design with a continuous outcome variable
Estimates for a 2x2 between-subjects design with a continuous outcome variable
Returns object estimate_mdiff_2x2_between is suitable for a 2x2 between-subjects design with a continuous outcome variable. It estimates each main effect, the simple effects for the first factor, and the interaction. It can express these estimates as mean differences, standardized mean differences (Cohen's d), and as median differences (raw data only). You can pass raw data or or summary data (summary data does not return medians).
outcome_variable: For raw data - The column name of the outcome variable, or a vector of numeric data
grouping_variable_A: For raw data - The column name of the grouping variable, or a vector of group names, only 2 levels allowed
grouping_variable_B: For raw data - The column name of the grouping variable, or a vector of group names, only 2 levels allowed
means: For summary data - A vector of 4 means: A1B1, A1B2, A2B1, A2B2
sds: For summary data - A vector of 4 standard deviations, same order
ns: For summary data - A vector of 4 sample sizes
grouping_variable_A_levels: For summary data - An optional vector of 2 group labels
grouping_variable_B_levels: For summary data - An optional vector of 2 group labels
outcome_variable_name: Optional friendly name for the outcome variable. Defaults to 'My outcome variable' or the outcome variable column name if a data frame is passed.
grouping_variable_A_name: Optional friendly name for the grouping variable. Defaults to 'A' or the grouping variable column name if a data.frame is passed.
grouping_variable_B_name: Optional friendly name for the grouping variable. Defaults to 'A' or the grouping variable column name if a data.frame is passed.
conf_level: The confidence level for the confidence interval. Given in decimal form. Defaults to 0.95.
assume_equal_variance: Defaults to FALSE
save_raw_data: For raw data; defaults to TRUE; set to FALSE to save memory by not returning raw data in estimate object
Returns
Returns object of class esci_estimate
es_mean_difference
type -
outcome_variable_name -
grouping_variable_name -
effect -
effect_size -
LL -
UL -
SE -
df -
ta_LL -
ta_UL -
effect_type -
effects_complex -
es_median_difference
type -
outcome_variable_name -
grouping_variable_name -
effect -
effect_size -
LL -
UL -
SE -
ta_LL -
ta_UL -
effect_type -
effects_complex -
es_smd
outcome_variable_name -
grouping_variable_name -
effect -
effect_size -
LL -
UL -
numerator -
denominator -
SE -
df -
d_biased -
effect_type -
effects_complex -
overview
outcome_variable_name -
grouping_variable_name -
grouping_variable_level -
mean -
mean_LL -
mean_UL -
median -
median_LL -
median_UL -
sd -
min -
max -
q1 -
q3 -
n -
missing -
df -
mean_SE -
median_SE -
raw_data
grouping_variable -
outcome_variable -
grouping_variable_A -
grouping_variable_B -
Details
Reach for this function in place of a 2x2 between-subjects ANOVA.
Once you generate an estimate with this function, you can visualize it with plot_mdiff() and you can visualize the interaction specifically with plot_interaction(). You can test hypotheses with test_mdiff().
The estimated mean differences are from statpsych::ci.2x2.mean.bs().
The estimated SMDs are from statpsych::ci.2x2.stdmean.bs().
The estimated median differences are from statpsych::ci.2x2.median.bs()
Examples
data("data_videogameaggression")estimates_from_raw <- esci::estimate_mdiff_2x2_between( esci::data_videogameaggression, Agression, Violence, Difficulty
)# To visualize the estimated mean difference for the interactionmyplot_from_raw <- esci::plot_mdiff( estimates_from_raw$interaction, effect_size ="median")# To conduct a hypothesis test on the mean differenceres_htest_from_raw <- esci::test_mdiff( estimates_from_raw$interaction, effect_size ="median")# From summary datameans <- c(1.5,1.14,1.38,2.22)sds <- c(1.38,.96,1.5,1.68)ns <- c(26,26,25,26)grouping_variable_A_levels <- c("Evening","Morning")grouping_variable_B_levels <- c("Sleep","No Sleep")estimates_from_summary <- esci::estimate_mdiff_2x2_between( means = means, sds = sds, ns = ns, grouping_variable_A_levels = grouping_variable_A_levels, grouping_variable_B_levels = grouping_variable_B_levels, grouping_variable_A_name ="Testing Time", grouping_variable_B_name ="Rest", outcome_variable_name ="False Memory Score", assume_equal_variance =TRUE)# To visualize the estimated mean difference for the interactionplot_mdiff_interaction <- esci::plot_mdiff( estimates_from_summary$interaction, effect_size ="mean")# To visualize the interaction as a line plotplot_interaction_line <- esci::plot_interaction(estimates_from_summary)# Same but with fan effect representing each simple-effect CIplot_interaction_line_CI <- esci::plot_interaction( estimates_from_summary, show_CI =TRUE)# To conduct a hypothesis test on the mean differenceres_htest_from_raw <- esci::test_mdiff( estimates_from_summary$interaction, effect_size ="mean")