Estimates for a single-group design with a continuous outcome variable compared to a reference or population value
Estimates for a single-group design with a continuous outcome variable compared to a reference or population value
Returns object estimate_mdiff_one is suitable for a single-group design with a continuous outcome variable that is compared to a reference or population value. It can express estimates as mean differences, standardized mean differences (Cohen's d) or median differences (raw data only). You can pass raw data or summary data.
outcome_variable: For raw data - The column name of the outcome variable, or a vector of numeric data
comparison_mean: For summary data, a numeric
comparison_sd: For summary data, numeric > 0
comparison_n: For summary data, a numeric integer > 0
reference_mean: Reference value, defaults to 0
outcome_variable_name: Optional friendly name for the outcome variable. Defaults to 'My outcome variable' or the outcome variable column name if a data frame is passed.
conf_level: The confidence level for the confidence interval. Given in decimal form. Defaults to 0.95.
save_raw_data: For raw data; defaults to TRUE; set to FALSE to save memory by not returning raw data in estimate object
Returns
Returns object of class esci_estimate
overview
outcome_variable_name -
mean -
mean_LL -
mean_UL -
median -
median_LL -
median_UL -
sd -
min -
max -
q1 -
q3 -
n -
missing -
df -
mean_SE -
median_SE -
es_mean
outcome_variable_name -
effect -
effect_size -
LL -
UL -
SE -
df -
ta_LL -
ta_UL -
es_median
outcome_variable_name -
effect -
effect_size -
LL -
UL -
SE -
df -
ta_LL -
ta_UL -
raw_data
grouping_variable -
outcome_variable -
es_mean_difference
outcome_variable_name -
effect -
effect_size -
LL -
UL -
SE -
df -
ta_LL -
ta_UL -
type -
es_median_difference
outcome_variable_name -
effect -
effect_size -
LL -
UL -
SE -
df -
ta_LL -
ta_UL -
type -
es_smd
outcome_variable_name -
effect -
effect_size -
LL -
UL -
numerator -
denominator -
SE -
df -
d_biased -
Details
Reach for this function in place of a z-test or one-sample t-test.
Once you generate an estimate with this function, you can visualize it with plot_mdiff() and you can test hypotheses with test_mdiff().
The estimated mean differences are from statpsych::ci.mean1() (renamed ci.mean as of statpsych 1.6).
The estimated SMDs are from CI_smd_one().
The estimated median differences are from statpsych::ci.median1() (renamed ci.median as of statpsych 1.6)
Examples
# From raw datadata("data_penlaptop1")estimate_from_raw <- esci::estimate_mdiff_one( data = data_penlaptop1[data_penlaptop1$condition =="Pen",], outcome_variable = transcription, reference_mean =10)# To visualize the mean difference estimatemyplot_from_raw <- esci::plot_mdiff(estimate_from_raw, effect_size ="mean")# To conduct a hypothesis testres_htest_from_raw <- esci::test_mdiff( estimate_from_raw, effect_size ="mean", rope = c(-2,2))# From summary datamymean <-12.09mysd <-5.52myn <-103estimate_from_summary <- esci::estimate_mdiff_one( comparison_mean = mymean, comparison_sd = mysd, comparison_n = myn, reference_mean =12)# To visualize the estimatemyplot_from_sumary <- esci::plot_mdiff( estimate_from_summary, effect_size ="mean")# To conduct a hypothesis testres_htest_from_summary <- esci::test_mdiff( estimate_from_summary, effect_size ="mean", rope = c(-2,2))